UV-254 nm活化过硫酸盐降解麻黄碱的影响因素和机理

张恒, 吴琳琳, 陈力可, 侯嵩, 高建峰, 郭昌胜, 徐建. UV-254 nm活化过硫酸盐降解麻黄碱的影响因素和机理[J]. 环境化学, 2020, (6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501
引用本文: 张恒, 吴琳琳, 陈力可, 侯嵩, 高建峰, 郭昌胜, 徐建. UV-254 nm活化过硫酸盐降解麻黄碱的影响因素和机理[J]. 环境化学, 2020, (6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501
ZHANG Heng, WU Linlin, CHEN Like, HOU Song, GAO Jianfeng, GUO Changsheng, XU Jian. Influencing factors and mechanisms of ephedrine degradation by UV-254 nm activated persulfate[J]. Environmental Chemistry, 2020, (6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501
Citation: ZHANG Heng, WU Linlin, CHEN Like, HOU Song, GAO Jianfeng, GUO Changsheng, XU Jian. Influencing factors and mechanisms of ephedrine degradation by UV-254 nm activated persulfate[J]. Environmental Chemistry, 2020, (6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501

UV-254 nm活化过硫酸盐降解麻黄碱的影响因素和机理

    通讯作者: 郭昌胜, E-mail: guocs@craes.org.cn
  • 基金项目:

    国家水体污染控制与治理科技重大专项(2017ZX07301005-003,2017ZX07302001)和国家自然科学基金(41673120)资助.

Influencing factors and mechanisms of ephedrine degradation by UV-254 nm activated persulfate

    Corresponding author: GUO Changsheng, guocs@craes.org.cn
  • Fund Project: Supported by the National Water Pollution Control and Management Science and Technology Major Project (2017ZX07301005-003, 2017ZX07302001) and the National Natural Science Foundation of China (41673120).
  • 摘要: 采用UV-254 nm活化过硫酸盐高级氧化技术去除水中污染物麻黄碱(EPH),并研究了其降解动力学过程和降解机理.考察了过硫酸盐(PS)投加量、EPH的初始浓度、不同pH值及不同离子(HCO3-、NO3-、Cl-)对降解效果的影响.结果表明,UV-254 nm活化过硫酸盐工艺能有效去除实验条件下的EPH,其氧化降解反应符合二级动力学方程.EPH去除率随着PS投加量的增加而增大.pH对降解反应有较大的影响,在pH=7的条件下,反应速率最快,表观反应动力学常数(kobs)为0.467 min-1.进一步研究表明,HCO3-、NO3-和Cl-对EPH的降解都存在抑制作用,在相同浓度下,其抑制程度依次为Cl- > NO3- > HCO3-.通过UPLC-MS/MS鉴定了麻黄碱降解的中间体,并提出了可能的降解机理和转化途径.
  • 加载中
  • [1] ANDRAWS R, CHAWLA P, BROWN D L. Cardiovascular effects of Ephedra alkaloids:A comprehensive review[J]. Progress in Cardiovascular Diseases, 2005, 47(4):217-225.
    [2] SKINNER H F. Methamphetamine synthesis via hydriodic acid/red phosphorus reduction of ephedrine[J]. Forensic Science International, 1990, 48(2):123-134.
    [3] KASPRZYK-HORDERN B, BAKER D R. Estimation of community-wide drugs use via stereoselective profiling of sewage[J]. Science of the Total Environment, 2012, 423:142-150.
    [4] ZHANG Y, ZHANG T, GUO C, et al. Drugs of abuse and their metabolites in the urban rivers of Beijing, China:Occurrence, distribution, and potential environmental risk[J]. Science of the Total Environment, 2017, 579:305-313.
    [5] CHIAIA A C, BANTA-GREEN C, FIELD J. Eliminating solid phase extraction with large-volume injection LC/MS/MS:Analysis of illicit and legal drugs and human urine indicators in US wastewaters[J]. Environmental Science and Technology, 2008, 42(23):8841-8848.
    [6] POSTIGO C, LÓPEZ DE ALDA M J, BARCELÓ D. Drugs of abuse and their metabolites in the Ebro River basin:Occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation[J]. Environment International, 2010, 36(1):75-84.
    [7] DEVAULT D A, NÉFAU, THOMAS, LEVI Y, et al. The removal of illicit drugs and morphine in two waste water treatment plants (WWTPs) under tropical conditions[J]. Environmental Science and Pollution Research, 2017,24:25645-25655.
    [8] RICE J, PROCTOR K, LOPARDO L, et al. Stereochemistry of ephedrine and its environmental significance:Exposure and effects directed approach[J]. Journal of hazardous materials, 2018, 348:39-46.
    [9] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation:A review[J]. Chemosphere, 2016, 151:178-188.
    [10] GAO Y Q, GAO N Y, DENG Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J]. Chemical Engineering Journal, 2012, 195-196:248-253.
    [11] WANG Z, CHEN Y, XIE P, et al. Removal of Microcystis aeruginosa by UV-activated persulfate:Performance and characteristics[J]. Chemical Engineering Journal, 2016, 300:245-253.
    [12] GU D, GUO C, LV J, et al. Removal of methamphetamine by UV-activated persulfate:Kinetics and mechanisms[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 379:32-38.
    [13] WANG Z, SHAO Y, GAO N, et al. Degradation kinetic of dibutyl phthalate (DBP) by sulfate radical-and hydroxyl radical-based advanced oxidation process in UV/persulfate system[J]. Separation and Purification Technology, 2018, 195:92-100.
    [14] LIANG C, WANG Z-S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1):106-113.
    [15] LI R, KONG J, LIU H, et al. Removal of indomethacin using UV-vis/peroxydisulfate:Kinetics, toxicity, and transformation pathways[J]. Chemical Engineering Journal, 2018, 331:809-817.
    [16] CRIQUET J, LEITNER N K V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis[J]. Chemosphere, 2009, 77(2):194-200.
    [17] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental Science and Technology, 2014, 48(4):2344-2351.
    [18] DENG J, SHAO Y, GAO N, et al. Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water[J]. Chemical Engineering Journal, 2013, 222:150-158.
    [19] GU D, GUO C, LV J, et al. Removal of methamphetamine by UV-activated persulfate:Kinetics and mechanisms[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 379:32-38.
    [20] 吴强, 陈建挺, 郭黎, 等. 紫外/过硫酸盐降解水中对氨基苯甲酸的研究[J]. 生物化工, 2019, 5(1):87-90.

    WU Q, CHEN J T, GUO L, et al. Degradation of p-aminobenzoic acid in water by UV/persulfate process[J]. Biological Chemical Engineering, 2019, 5(1):87-90(in Chinese).

    [21] FRANCESCO M, ATTILIO C. Electron-transfer processes:Peroxydisulfate, a useful and versatile reagent in organic chemistry[J]. Acc Chem Res, 1983, 16:27-32.
  • 加载中
计量
  • 文章访问数:  2258
  • HTML全文浏览数:  2258
  • PDF下载数:  95
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-05
张恒, 吴琳琳, 陈力可, 侯嵩, 高建峰, 郭昌胜, 徐建. UV-254 nm活化过硫酸盐降解麻黄碱的影响因素和机理[J]. 环境化学, 2020, (6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501
引用本文: 张恒, 吴琳琳, 陈力可, 侯嵩, 高建峰, 郭昌胜, 徐建. UV-254 nm活化过硫酸盐降解麻黄碱的影响因素和机理[J]. 环境化学, 2020, (6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501
ZHANG Heng, WU Linlin, CHEN Like, HOU Song, GAO Jianfeng, GUO Changsheng, XU Jian. Influencing factors and mechanisms of ephedrine degradation by UV-254 nm activated persulfate[J]. Environmental Chemistry, 2020, (6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501
Citation: ZHANG Heng, WU Linlin, CHEN Like, HOU Song, GAO Jianfeng, GUO Changsheng, XU Jian. Influencing factors and mechanisms of ephedrine degradation by UV-254 nm activated persulfate[J]. Environmental Chemistry, 2020, (6): 1607-1616. doi: 10.7524/j.issn.0254-6108.2019120501

UV-254 nm活化过硫酸盐降解麻黄碱的影响因素和机理

    通讯作者: 郭昌胜, E-mail: guocs@craes.org.cn
  • 1. 中北大学理学院, 太原, 030051;
  • 2. 中国环境科学研究院环境健康风险评估与研究中心, 北京, 100012;
  • 3. 国家环境保护化学品生态效应与风险评估重点实验室, 北京, 100012
基金项目:

国家水体污染控制与治理科技重大专项(2017ZX07301005-003,2017ZX07302001)和国家自然科学基金(41673120)资助.

摘要: 采用UV-254 nm活化过硫酸盐高级氧化技术去除水中污染物麻黄碱(EPH),并研究了其降解动力学过程和降解机理.考察了过硫酸盐(PS)投加量、EPH的初始浓度、不同pH值及不同离子(HCO3-、NO3-、Cl-)对降解效果的影响.结果表明,UV-254 nm活化过硫酸盐工艺能有效去除实验条件下的EPH,其氧化降解反应符合二级动力学方程.EPH去除率随着PS投加量的增加而增大.pH对降解反应有较大的影响,在pH=7的条件下,反应速率最快,表观反应动力学常数(kobs)为0.467 min-1.进一步研究表明,HCO3-、NO3-和Cl-对EPH的降解都存在抑制作用,在相同浓度下,其抑制程度依次为Cl- > NO3- > HCO3-.通过UPLC-MS/MS鉴定了麻黄碱降解的中间体,并提出了可能的降解机理和转化途径.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回