海水曝气对海洋微生物群落和抗生素抗性基因的影响

林旭吟, 王艳, 许敏, 张振炎, 钱海丰. 海水曝气对海洋微生物群落和抗生素抗性基因的影响[J]. 生态毒理学报, 2024, 19(1): 252-261. doi: 10.7524/AJE.1673-5897.20230906001
引用本文: 林旭吟, 王艳, 许敏, 张振炎, 钱海丰. 海水曝气对海洋微生物群落和抗生素抗性基因的影响[J]. 生态毒理学报, 2024, 19(1): 252-261. doi: 10.7524/AJE.1673-5897.20230906001
Lin Xuyin, Wang Yan, Xu Min, Zhang Zhenyan, Qian Haifeng. Effects of Seawater Aeration on Marine Microbial Communities and Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(1): 252-261. doi: 10.7524/AJE.1673-5897.20230906001
Citation: Lin Xuyin, Wang Yan, Xu Min, Zhang Zhenyan, Qian Haifeng. Effects of Seawater Aeration on Marine Microbial Communities and Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(1): 252-261. doi: 10.7524/AJE.1673-5897.20230906001

海水曝气对海洋微生物群落和抗生素抗性基因的影响

    作者简介: 林旭吟(1974-),女,硕士,副教授,研究方向为水产微生物,E-mail:xmhy000@163.com
    通讯作者: 张振炎,E-mail: zhenyanzjut@gmail.com; 
  • 基金项目:

    厦门市智慧渔业重点实验室开放基金;福建海洋生物应用技术协同创新中心专项(XTZX-HYSW-1804);福建省中青年教师教育科研项目(JAT191318)

  • 中图分类号: X171.5

Effects of Seawater Aeration on Marine Microbial Communities and Antibiotic Resistance Genes

    Corresponding author: Zhang Zhenyan, zhenyanzjut@gmail.com
  • Fund Project:
  • 摘要: 占地球表面71%的海洋蕴含丰富且独特的微生物资源。为维持海产品的鲜活,人们常采用循环暂养技术,通过曝气装置增加水体含氧量。本研究运用宏基因组技术,分析氧含量变化对海洋微生物群落结构、功能组成及抗生素抗性基因的影响。研究发现,高氧海水中的以α-变形菌纲为主的微生物群落多样性较高,而微生物群落功能多样性则随着氧浓度升高而降低。海洋微生物中多种抗生素抗性基因与毒力因子基因丰度下降。这表明海水中氧含量的上升可以减少微生物的抗药性和致病潜能,从而降低其对人类健康的潜在风险。
  • 加载中
  • Dehghani S, Hosseini S V, Regenstein J M. Edible films and coatings in seafood preservation: A review[J]. Food Chemistry, 2018, 240: 505-513
    Hassoun A, Siddiqui S A, Smaoui S, et al. Seafood processing, preservation, and analytical techniques in the age of industry 4.0[J]. Applied Sciences, 2022, 12(3): 1703
    张偲, 张长生, 田新朋, 等. 中国海洋微生物多样性研究[J]. 中国科学院院刊, 2010, 25(6): 651-658

    Zhang S, Zhang C S, Tian X P, et al. The study of diversities of marine microbes in China[J]. Bulletin of Chinese Academy of Sciences, 2010, 25(6): 651-658(in Chinese)

    del Giorgio P A. Progress and perspectives in aquatic microbial ecology: Introduction[J]. Aquatic Microbial Ecology, 2010, 61(3): 219-220
    胡晓娟. 广东典型海域微生物群落特征分析[D]. 广州: 暨南大学, 2013: 50-54 Hu X J. Analysis of microbial community characteristics in typical marine areas of Guangdong[D]. Guangzhou: Jinan University, 2013:50

    -54(in Chinese)

    Zhu L, Lian Y L, Lin D, et al. Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2022, 437: 129356
    Hatosy S M, Martiny A C. The ocean as a global reservoir of antibiotic resistance genes[J].Applied and Environmental Microbiology, 2015, 81(21): 7593-7599
    Xu N H, Qiu D Y, Zhang Z Y, et al. A global atlas of marine antibiotic resistance genes and their expression[J]. Water Research, 2023, 244: 120488
    Fernandes N, Case R J, Longford S R, et al. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra[J]. PLoS One, 2011, 6(12): e27387
    Billaud M, Seneca F, Tambutté E, et al. An increase of seawater temperature upregulates the expression of Vibrio parahaemolyticus virulence factors implicated in adhesion and biofilm formation[J]. Frontiers in Microbiology, 2022, 13: 840628
    Armbruster C R, Parsek M R. New insight into the early stages of biofilm formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4317-4319
    Lopatek M, Wieczorek K, Osek J. Antimicrobial resistance, virulence factors, and genetic profiles of Vibrio parahaemolyticus from seafood[J]. Applied and Environmental Microbiology, 2018, 84(16): e00537-e00518
    Bondarczuk K, Markowicz A, Piotrowska-Seget Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application[J]. Environment International, 2016, 87: 49-55
    Unc A, Zurek L, Peterson G, et al. Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek[J]. Journal of Environmental Quality, 2012, 41(2): 534-543
    Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria[J]. Environmental Microbiology, 2005, 7(11): 1673-1685
    Bertagnolli A D, Stewart F J. Microbial niches in marine oxygen minimum zones[J]. Nature Reviews Microbiology, 2018, 16: 723-729
    徐新亚, 杨宏, 宁小清, 等. 北部湾海洋微生物物种多样性与化学多样性研究进展[J]. 广西科学, 2020, 27(5): 433-450

    , 461 Xu X Y, Yang H, Ning X Q, et al. Research progress of marine microbial diversity and chemical diversity in Beibu Gulf[J]. Guangxi Sciences, 2020, 27(5): 433-450, 461(in Chinese)

    Yang S J, Kang I, Cho J C. Expansion of cultured bacterial diversity by large-scale dilution-to-extinction culturing from a single seawater sample[J].Microbial Ecology, 2016, 71(1): 29-43
    Gao X Y, Xu Y, Liu Y, et al. Bacterial diversity, community structure and function associated with biofilm development in a biological aerated filter in a recirculating marine aquaculture system[J]. Marine Biodiversity, 2012, 42(1): 1-11
    Zinser E R. The microbial contribution to reactive oxygen species dynamics in marine ecosystems[J]. Environmental Microbiology Reports, 2018, 10(4): 412-427
    Galand P, Lucas S, Fagervold S, et al. Disturbance increases microbial community diversity and production in marine sediments[J]. Frontiers in Microbiology, 2016, 7: 1950
    Louca S, Polz M F, Mazel F, et al. Function and functional redundancy in microbial systems[J]. Nature Ecology & Evolution, 2018, 2: 936-943
    Jessen G L, Lichtschlag A, Ramette A, et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea)[J]. Science Advances, 2017, 3(2): e1601897
    Loza A, García-Guevara F, Segovia L, et al. Definition of the metagenomic profile of ocean water samples from the gulf of Mexico based on comparison with reference samples from sites worldwide[J]. Frontiers in Microbiology, 2021, 12: 781497
    Hu Z, Feng J, Song H, et al. Metabolic response of Mercenaria mercenaria under heat and hypoxia stress by widely targeted metabolomic approach[J]. The Science of the Total Environment, 2022, 809: 151172
    Dölle C, Rack J G M, Ziegler M. NAD and ADP-ribose metabolism in mitochondria[J]. The FEBS Journal, 2013, 280(15): 3530-3541
    Duff J P, AbuOun M, Bexton S, et al. Resistance to carbapenems and other antibiotics in Klebsiella pneumoniae found in seals indicates anthropogenic pollution[J]. The Veterinary Record, 2020, 187(4): 154
    Founou L L, Founou R C, Essack S. Antibiotic resistance in the food chain: A developing country-perspective[J]. Frontiers in Microbiology, 2016, 7: 1881
    Michniewski S, Rihtman B, Cook R, et al. A new family of “megaphages” abundant in the marine environment[J]. ISME Communications, 2021, 1(1): 58
    Zhang Q, Zhang Z Y, Lu T, et al. Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems[J]. Communications Biology, 2020, 3(1): 737
    Felis E, Kalka J, Sochacki A, et al. Antimicrobial pharmaceuticals in the aquatic environment: Occurrence and environmental implications[J]. European Journal of Pharmacology, 2020, 866: 172813
    Chen Y W, Wu Y Y, Qin L M, et al. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors[J]. Virulence, 2021, 12(1): 788-817
    Vlaanderen E J, Ghaly T M, Moore L R, et al. Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities[J]. Environmental Pollution, 2023, 327: 121558
    Karan S, Garg L C, Choudhury D, et al. Recombinant FimH, a fimbrial tip adhesin of Vibrio parahaemolyticus, elicits mixed T helper cell response and confers protection against Vibrio parahaemolyticus challenge in murine model[J]. Molecular Immunology, 2021, 135: 373-387
    许雪莲, 韩阿祥, 叶诗晴, 等. 温州口岸截获蜱体内微生物群落结构、抗生素抗性基因及毒力因子的宏基因组分析[J]. 中国媒介生物学及控制杂志, 2021, 32(6): 763-771

    Xu X L, Han A X, Ye S Q, et al. Metagenomic analysis of microbial community structure, antibiotic resistance genes, and virulence factors of ticks captured at Wenzhou Port, Zhejiang Province, China[J]. Chinese Journal of Vector Biology and Control, 2021, 32(6): 763-771(in Chinese)

    Jasim Al-Thabhawee M H, Muttaleb Al-Dahmoshi H. Molecular investigation of outer membrane channel genes among multidrug resistance clinical Pseudomonas aeruginosa isolates[J]. Reports of Biochemistry & Molecular Biology, 2022, 11(1): 102-110
  • 加载中
计量
  • 文章访问数:  924
  • HTML全文浏览数:  924
  • PDF下载数:  132
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-09-06
林旭吟, 王艳, 许敏, 张振炎, 钱海丰. 海水曝气对海洋微生物群落和抗生素抗性基因的影响[J]. 生态毒理学报, 2024, 19(1): 252-261. doi: 10.7524/AJE.1673-5897.20230906001
引用本文: 林旭吟, 王艳, 许敏, 张振炎, 钱海丰. 海水曝气对海洋微生物群落和抗生素抗性基因的影响[J]. 生态毒理学报, 2024, 19(1): 252-261. doi: 10.7524/AJE.1673-5897.20230906001
Lin Xuyin, Wang Yan, Xu Min, Zhang Zhenyan, Qian Haifeng. Effects of Seawater Aeration on Marine Microbial Communities and Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(1): 252-261. doi: 10.7524/AJE.1673-5897.20230906001
Citation: Lin Xuyin, Wang Yan, Xu Min, Zhang Zhenyan, Qian Haifeng. Effects of Seawater Aeration on Marine Microbial Communities and Antibiotic Resistance Genes[J]. Asian journal of ecotoxicology, 2024, 19(1): 252-261. doi: 10.7524/AJE.1673-5897.20230906001

海水曝气对海洋微生物群落和抗生素抗性基因的影响

    通讯作者: 张振炎,E-mail: zhenyanzjut@gmail.com; 
    作者简介: 林旭吟(1974-),女,硕士,副教授,研究方向为水产微生物,E-mail:xmhy000@163.com
  • 1. 厦门海洋职业技术学院海洋生物学院, 厦门 361100;
  • 2. 浙江工业大学环境学院, 杭州 310032;
  • 3. 浙江工业大学莫干山研究院, 湖州 310000;
  • 4. 厦门市智慧渔业重点实验室, 厦门海洋职业技术学院, 厦门 361100
基金项目:

厦门市智慧渔业重点实验室开放基金;福建海洋生物应用技术协同创新中心专项(XTZX-HYSW-1804);福建省中青年教师教育科研项目(JAT191318)

摘要: 占地球表面71%的海洋蕴含丰富且独特的微生物资源。为维持海产品的鲜活,人们常采用循环暂养技术,通过曝气装置增加水体含氧量。本研究运用宏基因组技术,分析氧含量变化对海洋微生物群落结构、功能组成及抗生素抗性基因的影响。研究发现,高氧海水中的以α-变形菌纲为主的微生物群落多样性较高,而微生物群落功能多样性则随着氧浓度升高而降低。海洋微生物中多种抗生素抗性基因与毒力因子基因丰度下降。这表明海水中氧含量的上升可以减少微生物的抗药性和致病潜能,从而降低其对人类健康的潜在风险。

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回