组合式人工湿地对分散型生活污水净化效果及其微生物群落结构特征
Purification effect of combined artificial wetlands on dispersed domestic sewage and analysis of microbial community structure
-
摘要: 为了解组合式人工湿地对分散型生活污水的净化效果及微生物群落结构多样性的变化规律,以某生活污水处理厂细格栅出水为研究对象,研究人工湿地对生活污水中COD、NH3-N、TN和TP的去除效果,采用高通量测序的方法分析填料和植物根系微生物的多样性变化规律.结果表明,组合式人工湿地在0.15—0.35 m3·(m2·d)-1的水力负荷下对污染物的去除效果最好,对COD、NH3-N、TN和TP的平均去除率为82.94%、65.69%、56.57%和79.98%,湿地出水稳定达标.此次分析包括门、纲、属水平,其中在门分类水平上以变形菌门、酸杆菌门、绿弯菌门、厚壁菌门、放线菌门为共有的优势菌门,在纲为分类水平上以γ-变形菌纲、酸杆菌纲、α-变形杆菌纲和芽孢杆菌纲为优势菌群,在属为分类水平上以硝化螺旋菌属、节杆菌属、红游动菌属和假单胞菌属为优势菌属.其中,湿地填料和植物根系微生物群落多样性与污水性质相关性分析表明,其微生物多样性与污水温度、pH和溶解氧呈现显著负相关,这是影响组合式人工湿地填料和植物根系微生物群落发生变化的重要因子.Abstract: In order to understand the purification effect of combined constructed wetlands on the pollutant removal of domestic sewage and the change of the microbial community structure, the removal effect of COD, NH3-N, TN and TP in the fine grid effluent from Sewage Treatment Plant by the constructed wetlands and the high throughput sequencing information of the microbial community in the filler and plant root system were studied, respectively. The results showed that constructed wetlands had the best effect on pollutant removal under the hydraulic load of 0.15-0.35 m3·(m2·d)-1, with the average removal rate of COD, NH3-N, TN and TP being 82.94%, 65.69%, 56.57% and 79.98%, respectively. The effluent of constructed wetlands reached the standard stably. The microbiological analysis included phylum, class and genus levels, in which proteobacteria, acidobacteria, chlorobacteria, firmicutes, and actinomycetes were dominant bacteria at the phylum classification level, γ-proteobacteria, acidobacteria, α-proteobacteria and bacillus were dominant bacteria at the phylum classification level, and spirulina, arthrobacter, erythrozoa and pseudomonas were dominant bacteria at the genus level. Meanwhile, based on the analysis of the correlation between constructed wetlands' fillers and plant root microbial community diversity and the nature of sewage, it was found that microbial diversity was significantly negatively correlated with sewage temperature, pH and dissolved oxygen, which were important factors affecting the changes of the combined constructed wetlands fillers and plant root microbial community.
-
[1] 张培培, 王成新, 肖伟华, 等. 我国中长期水环境安全战略体系构建[J]. 环境保护, 2018, 46(5):64-67. ZHANG P P, WANG C X, XIAO W H, et al. System construction of medium-long period water environment security strategy in China[J]. Environmental Protection, 2018, 46(5):64-67(in Chinese).
[2] 张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展[J]. 环境化学, 2018, 37(7):1491-1500. ZHANG G D, DONG W P, LIU X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China[J]. Environmental Chemistry, 2018, 37(7):1491-1500(in Chinese).
[3] 刘秀丽, 涂卓卓. 水环境安全评价方法及其在京津冀地区的应用[J]. 中国管理科学, 2018, 26(3):160-168. LIU X L, TU Z Z. Assessment methord on water environment security and its application in Jing-Jin-Ji region[J]. Chinese Journal of Management Science, 2018, 26(3):160-168(in Chinese).
[4] 中华人民共和国生态环境部. 2016中国环境状况公报[R]. 北京, 2017. Ministry of Ecological Environmnet of the People'S Republic of China. The China Environmental Status Bulletin in 2016[R]. Beijing, 2017(in Chinese). [5] 文一波. 中国典型村镇污水处理系统研究[D]. 北京:清华大学, 2016. WEN Y B. A study on wastewater treatment system in chinese typical villages[D]. Beijing:Tsinghua University, 2016(in Chinese). [6] 谭海威. 农村生活污水分散式处理系统与实用技术的思考[J]. 环境与发展, 2018, 30(7):66-67. TAN H W. Thinking of dispersed treatment system and practical technology of rural domestic sewage[J]. Environment and Development, 2018, 30(7):66-67(in Chinese).
[7] 张曼雪, 邓玉, 倪福全. 农村生活污水处理技术研究进展[J]. 水处理技术, 2017, 43(6):5-10. ZHANG M X, DENG Y, NI Q F. Research progress of sewage treatment technology in rural areas[J]. Technology of Water Treatment, 2017, 43(6):5-10(in Chinese).
[8] 唐孟煊, 吴娟, 代嫣然, 等. 组合式垂直流人工湿地工艺及其污水处理效果[J]. 环境工程学报, 2016, 10(3):1017-1022. TANG M X, WU J, DAI Y Y, et al. Treatment of domestic wastewater by hybrid vertical constructed wetland[J]. Chinese Journal of Environmental Engineering, 2016, 10(3):1017-1022(in Chinese).
[9] 郭一明. 耦合生态技术深度处理农村分散式生活污水效能与仿真[D]. 长沙:湖南大学, 2014. GUO Y M. The effectiveness analysis and simulation of coupling advanced bio-treatment of decentralized sewage[D]. Changsha:Hunan University, 2014(in Chinese). [10] 王丽媛,孙洁梅,叶锴. 农村生活污水分散式处理现状与思考[J]. 四川环境, 2015, 34(2):73-75. WANG L Y, SUN J M, YE K. Current situation and considerations about decentralized treatment of rural domestic sewage[J]. Sichuan Environment, 2015, 34(2):73-75(in Chinese).
[11] 邓芙蓉, 刘东生, 王辉, 等.人工湿地与土壤净化槽处理农村生活污水的对比[J]. 环境化学, 2013, 32(2):232-239. DENG F R, LIU D S, WANG H, et al. Comparison research between constructed wetland and soil trench on the sewage treatment in rural area[J]. Environmental Chemistry, 2013, 32(2):232-239(in Chinese).
[12] 梁康, 王启烁, 王飞华, 等.人工湿地处理生活污水的研究进展[J]. 农业环境科学学报, 2014, 33(3):422-428. LIANG K, WANG Q S, WANG F H, et al. Research progresses in domestic wastewater treatment by constructed wetlands[J]. Journal of Agro-Environment Science, 2014, 33(3):422-428(in Chinese).
[13] LU S B, ZHANG X L, WANG J H, et al. Impacts of different media on constructed wetlands for rural household sewage treatment[J]. Journal of Cleaner Production, 2016, 127:325-330. [14] 张泽西, 刘佳凯, 张振明, 等. 种植不同植物及其组合的人工浮岛对水中氮、磷的去除效果比较[J]. 湿地科学, 2018, 16(2):273-278. ZHANG Z X, LIU J K, ZHANG Z M, et al. Comparison of removal efficiency of nitrogen and phosphorus by artificial floating islands with different plants[J]. Wetland Science, 2018, 16(2):273-278(in Chinese).
[15] LI X Y, DING A Z, ZHENG L, et al. Relationship between design parameters and removal efficiency for constructed wetlands in China[J]. Ecological Engineering, 2018, 123:135-140. [16] AURORA P E, PORTALES R, LEONEL A S, et al. Review of constructed wetlands for acid mine drainage treatment[J].Water, 2018, 10(11):1685-1710. [17] 周丽. 人工湿地污水处理技术研究和应用现状[J]. 工业用水与废水, 2016, 47(5):8-12. ZHOU L. Research and application of sewage treatment technology of constructed wetland[J]. Industrial Water & Wastewater, 2016, 47(5):8-12(in Chinese).
[18] WAGNER T, PARSONS J, RIJNAARTS H, et al. A review on the removal of conditioning chemicals from cooling tower water in constructed wetlands[J]. Critical Reviews in Environmental Science and Technology, 2019, 48:19-21. [19] CHAI H X, LI W Q, SHAO Z Y, et al. Pollutant removal performance of an integrated system that combines a baffled vertical-flow wetland and a scenic water body[J]. Environmental Science and Pollution Research, 2019, 26(1):269-281. [20] 赵军, 薛宇, 李晓东, 等. 复合人工湿地去除生活污水中的有机物和氮[J]. 环境工程学报, 2013, 7(1):26-30. ZHAO J, XUE Y, LI X D, et al. Removal of organic matter and nitrogen from wastewater by integrated vertical flow constructed wetland[J]. Chinese Journal of Environmental Engineering, 2013, 7(1):26-30(in Chinese).
[21] 熊家晴, 王亭如, 王晓昌. 复合人工湿地示范工程的脱氮除磷效果研究[J]. 中国给水排水, 2013, 29(21):75-77. XIONG J Q, WANG T R, WANG X C. Removal efficiency of nitrogen and phosphorus in composite constructed wetland demonstration project[J]. China Water & Wastewater, 2013, 29(21):75-77(in Chinese).
[22] TONG X N, WANG X Z, HE X J, et al. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland[J]. Science of the Total Environment, 2019, 656:503-511. [23] 雷旭, 李冰, 李晓,等.复合垂直流人工湿地系统中不同植物根际微生物群落结构[J]. 生态学杂志, 2015, 34(5):1373-1381. LEI X, LI B, LI X, et al. Rhizosphere microbial communities of three plants in vertical-flow constructed wetland[J]. Chinese Journal of Ecology, 2015, 34(5):1373-1381(in Chinese).
[24] 赵艳, 李锋民, 王昊云, 等.好氧/厌氧潜流湿地微生物多样性与净化能力的关系[J]. 环境科学学报, 2011, 31(11):2423-2431. ZHAO Y, LI F M, WANG H Y, et al. The relationship between microbial diversity and water purification capacity in aerobic/anaerobic subsurface flow constructed wetland[J]. Acta Scientiae Circumstantiae, 2011, 31(11):2423-2431(in Chinese).
[25] 杨立宾, 隋心, 崔福星, 等. 汤旺河国家公园不同演替阶段森林土壤细菌多样性变化规律[J]. 环境科学研究, 2019, 32(3):458-464. YANG L B, SUI X, CUI F X, et al. Soil bacterial diversity between different forest successional stages in tangwanghe national park[J]. Research of Environmental Sciences, 2019, 32(3):458-464(in Chinese).
[26] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2012. National Environmental Protection Agency. Methods for monitoring and analyzing water and wastewater[M]. Version 4. Beijing:China Environmental Press, 2012(in Chinese). [27] LANGILE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9):814-821. [28] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet Journal, 2011, 17(1):1-3. [29] TORBJORN R, TOMAS F, NICHOLS B, et al. VSEARCH:A versatile open source tool for metagenomics[J]. PeerJ, 2016, 4(10):e2584. [30] EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998. [31] FLANDROIS J P, GUY P, GOUY M. leBIBI(QBPP):A set of databases and a webtool for automatic phylogenetic analysis of prokaryotic sequences[J]. BMC Bioinformatics, 2015, 16(1):251-262. [32] WANG J, SONG X, WANG Y, et al. Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell:Establishment of electrochemically active bacteria community on anode[J]. Bioresource Technology, 2016, 221:358-365. 期刊类型引用(15)
1. 徐超,刘云根,杨思林,郭凤倩,赵兴杰,殷发金,文明发. 新型生物生态耦合工艺对生活污水的净化效果及微生物群落特征. 环境工程学报. 2025(03): 578-585 . 百度学术
2. 赵秋燕,任高翔,胡丽丽. 脱氮除磷条件下MBR运行的最佳水力条件优化. 徐州工程学院学报(自然科学版). 2024(01): 72-78 . 百度学术
3. 张子钰,田伟君,高惠子,杨淑洁,赵婧,储美乐,张丹彤,江俊峰. 复合潜流-潮汐流人工湿地基质对微污染水体的净化性能研究. 中国海洋大学学报(自然科学版). 2023(08): 104-112 . 百度学术
4. 石旻飞,张瑞斌,黄珺. 多级人工湿地对复合污染水体中营养盐和PFOS的去除. 环境化学. 2023(08): 2834-2842 . 本站查看
5. 王雪峰,刘文畅,樊利鹏,谭洪新,罗国芝,孙大川. 新建组合填料垂直潜流湿地系统处理沿海垦区池塘养殖尾水的效果. 渔业现代化. 2022(03): 46-54 . 百度学术
6. 李密,谌书,王彬,张弘弢,朱静平,涂卫国. 人工湿地植物炭基材料特性及铁碳微电解填料制备. 地球与环境. 2021(01): 82-91 . 百度学术
7. 孙园,魏心雨,丁怡. 人工湿地在修复富营养化水体中的应用及研究进展. 工业水处理. 2021(02): 8-14 . 百度学术
8. 宋大刚,李惠斌,王久臣,梅自力,冉毅. 基于文献计量分析的农村生活污水处理研究态势解析. 环境工程. 2021(05): 16-24+30 . 百度学术
9. 齐冉,张灵,杨帆,颜昌宙. 水力停留时间对潜流湿地净化效果影响及脱氮途径解析. 环境科学. 2021(09): 4296-4303 . 百度学术
10. 李莎,吕寅,房猛. 不同水流速度下透水混凝土对污水的净化作用研究. 环境科学与管理. 2021(09): 106-110 . 百度学术
11. 管文闯,王静,陈军. 基于CiteSpace的国内人工湿地科学知识图谱分析. 环境影响评价. 2021(06): 63-68 . 百度学术
12. 郭鹤方,甄志磊,赵林婷,李智涵. 潮汐流-潜流人工湿地对城市污染水体中氮的去除. 环境化学. 2021(12): 3887-3897 . 本站查看
13. 黎箭. 城镇污水治理中人工湿地的应用研究. 智能城市. 2020(08): 157-158 . 百度学术
14. 郭宁宁,李希,李裕元,周训军,叶磊,孟岑,夏梦华,吕殿青,彭健. 亚热带丘陵区人工湿地底栖动物群落特征及其对湿地植物配置的响应. 生态环境学报. 2020(10): 2010-2019 . 百度学术
15. 杨思敏. 农村污水治理技术研究进展. 环境保护科学. 2020(06): 76-82 . 百度学术
其他类型引用(21)
-

计量
- 文章访问数: 1812
- HTML全文浏览数: 1812
- PDF下载数: 98
- 施引文献: 36