生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响

张迪, 吴晓霞, 丁爱芳, 李婷, 方炫. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响[J]. 环境化学, 2019, (11): 2526-2534. doi: 10.7524/j.issn.0254-6108.2019042101
引用本文: 张迪, 吴晓霞, 丁爱芳, 李婷, 方炫. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响[J]. 环境化学, 2019, (11): 2526-2534. doi: 10.7524/j.issn.0254-6108.2019042101
ZHANG Di, WU Xiaoxia, DING Aifang, LI Ting, FANG Xuan. Effects of hydrated lime and biochar on the bioavailability of Cd and Pb and microbial activity in a contaminated soil[J]. Environmental Chemistry, 2019, (11): 2526-2534. doi: 10.7524/j.issn.0254-6108.2019042101
Citation: ZHANG Di, WU Xiaoxia, DING Aifang, LI Ting, FANG Xuan. Effects of hydrated lime and biochar on the bioavailability of Cd and Pb and microbial activity in a contaminated soil[J]. Environmental Chemistry, 2019, (11): 2526-2534. doi: 10.7524/j.issn.0254-6108.2019042101

生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响

    通讯作者: 张迪, E-mail: zhangdi@njxzc.edu.cn
  • 基金项目:

    南京晓庄学院校级科研项目(2018NXY52),江苏省高校自然科学研究项目(19KJB610005)和江苏省自然科学基金面上项目(BK20161118)资助.

Effects of hydrated lime and biochar on the bioavailability of Cd and Pb and microbial activity in a contaminated soil

    Corresponding author: ZHANG Di, zhangdi@njxzc.edu.cn
  • Fund Project: Supported by the Scientific Research Project of Nanjing Xiaozhuang University(2018NXY52), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB610005) and the Natural Science Foundation of Jiangsu Province, China (BK20161118).
  • 摘要: 以南京近郊某蔬菜基地土壤为研究对象,采用盆栽试验方法,研究熟石灰和生物炭两种钝化剂对镉铅复合污染土壤修复效果以及对土壤微生物活性的影响.结果表明,施加熟石灰和生物炭能够增加土壤pH和有机碳等养分含量,促进Cd、Pb由酸溶态向还原态和残渣态转化,降低Cd、Pb有效态含量.与对照处理相比,熟石灰和生物炭5.0%用量下,Cd有效态含量(DTPA、TCLP和CaCl2等3种提取态)分别下降37.74%—41.46%和22.22%—31.71%,Pb有效态含量分别下降45.59%—52.82%和35.47%—41.94%.生物炭的施用提高了土壤微生物量碳氮和微生物群落功能多样性,促进微生物对碳源的利用能力,其中生物炭5.0%用量下土壤微生物活性最高.熟石灰和生物炭的添加显著降低小白菜可食部位和根部对Cd、Pb的富集,与对照处理相比,可食部位Cd、Pb含量分别下降7.14%—47.62%和45.93%—74.82%,但所有添加钝化剂处理小白菜可食部位含量均超出国家安全食用标准.
  • 加载中
  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京, 2014. Ministry of Environment of the People's Republic of China, Ministry of Natural Resources of the People's Republic of China. National survey bulletin on soil pollution[R]. Beijing, 2014(in Chinese).
    [2] KEDE M, CORREIA F, CONCEICAO P, et al. Evaluation of mobility, bioavailability and toxicity of Pb and Cd in contaminated soil using TCLP, BCR and earthworms[J]. International Journal of Environmental Research and Public Health, 2014, 11:11528-11540.
    [3] GUO F Y, DING C F, ZHOU Z G, et al. Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation[J]. Ecotoxicology and Environmental Safety, 2018, 148:303-310.
    [4] 孟梅, 华玉妹, 朱端卫, 等. 生物炭对重金属污染沉积物的修复效果[J]. 环境化学, 2016, 35(12):2543-2552.

    MENG M, HUA Y M, ZHU D W, et al. Remediation effect of biochar on sediment contaminated by heavy metals[J]. Environmental Chemistry, 2016, 35(12):2543-2552(in Chinese).

    [5] 胡红青, 黄益宗, 黄巧云, 等. 农田土壤重金属污染化学钝化修复研究进展[J]. 植物营养与肥料学报, 2017, 23(6):1676-1685.

    HU H Q, HUANG Y Z, HUANG Q Y, et al. Research progress of heavy metals chemical immobilization in farm land[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6):1676-1685(in Chinese).

    [6] 陈欣瑶,杨惠子,陈楸健,等.重金属胁迫下不同区域土壤的生态功能稳定性与其微生物群落结构的相关性[J]. 环境化学, 2017, 36(2):356-364.

    CHEN X Y, YANG H Z, CHEN Q J, et al. Correlation between microbial community structure and soil ecosystem functional stability under heavy metal stress[J]. Environmental Chemistry, 2017, 36(2):356-364(in Chinese).

    [7] XIE Y, FAN J B, ZHU W X, et al. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation[J]. Frontiers in Plant Science, 2016, 7:1-12.
    [8] 郑涵, 田昕竹, 王学东, 等. 锌胁迫对土壤中微生物群落变化的影响[J]. 中国环境科学, 2017, 37(4):1458-1465.

    ZHENG H, TIAN X Z, WANG X D, et al. Effects of Zn pollution on soil microbial community in field soils and its main influence factors[J]. China Environmental Science, 2017, 37(4):1458-1465(in Chinese).

    [9] 刘沙沙, 付建平, 蔡信德, 等. 重金属污染对土壤微生物生态特征的影响研究进展[J]. 生态环境学报, 2018, 27(6):1173-1178.

    LIU S S, FU J P, CAI X D, et al. 2018. Effect of heavy metals pollution on ecological characteristics of soil microbes:A review[J]. Ecology and Environmental Sciences, 27(6):1173-1178(in Chinese).

    [10] 张迪, 丁爱芳. 组配钝化剂对镉铅复合污染土壤修复效果研究[J]. 农业环境科学学报, 2018, 37(12):2718-2726.

    ZHANG D, DING A F. Effects of combined passivating agents on remediation of Cd and Pb compound-contaminated soil[J]. Journal of Agro-Environment Science, 2018, 37(12):2718-2726(in Chinese).

    [11] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000. BAO S D. Soil agro-chemical analysis[M]. Beijing:China Agricultural Science Press, 2000(in Chinese).
    [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. LU R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000(in Chinese).
    [13] ROMKENS, P, GUO H Y, CHU C L, et al. Prediction of cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines[J]. Environmental Pollution, 2009, 157(8-9):2435-2444.
    [14] CHANG E E, CHIANG P C, LU P H, et al. Comparisons of metal leachability for various wastes by extraction and leaching methods[J]. Chemosphere, 2001, 45(1):91-99.
    [15] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6):703-707.
    [16] GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology, 1991, 57(8):2351-2359.
    [17] LI H B, DONG X L, SILVA E B D, et al. Mechanisms of metal sorption by biochars:Biochar characteristics and modifications[J]. Chemosphere, 2017, 178:466-478.
    [18] 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4):1110-1118.

    XU Y X, HE L L, LIU Y X, et al. Effects of biochar addition on enzyme activity and fertility in paddy soil after six years[J]. Chinese Journal of Applied Ecology, 2019, 30(4):1110-1118(in Chinese).

    [19] BASHIR S, SHAABAN M, HUSSAIN Q, et al. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil[J]. Journal of Soils and Sediments, 2018, 18:2948-2959.
    [20] 黎大荣, 吴丽香, 宁晓君, 等. 不同钝化剂对土壤有效态铅和镉含量的影响[J]. 环境保护科学, 2013, 39(3):46-49.

    LI D R, WU L X, NING X J, et al. Effects of different passivating agents on contents of available lead and cadmium in soil[J]. Environmental Protection Science, 2013, 39(3):46-49(in Chinese).

    [21] 倪中应, 章明奎. 生物炭配施石灰降低稻米镉和铅积累的效果[J]. 中国农学通报, 2018, 34(2):54-59.

    NI Z Y, ZHANG M K. Combined application of biochar and lime:Effect on reducing cadmium and lead accumulation in rice[J]. Chinese Agricultural Science Bulletin, 2018, 34(2):54-59(in Chinese).

    [22] 孙约兵, 王朋超, 徐应明, 等. 海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究壤[J]. 环境科学, 2014, 35(12):4720-4726.

    SUN Y B, WANG P C, XU Y M, et al. Immobilization remediation of Cd and Pb contaminated soil:Remediation potential and soil environmental quality[J]. Environmental Science, 2014, 35(12):4720-4726(in Chinese).

    [23] 杜彩艳, 王攀磊, 杜建磊, 等. 生物炭、沸石与膨润土混施对玉米生长和吸收Cd、Pb、Zn的影响研究[J]. 生态环境学报, 2019, 28(1):190-198.

    DU C Y, WANG P L, DU J L et al. Influence of fixed addition of biochar, zeolite and bentonite on growth and Cd, Pb, Zn uptake by maize[J]. Ecology and Environmental Sciences, 2019, 28(1):190-198(in Chinese).

    [24] 邹紫今, 周航, 吴玉俊, 等. 羟基磷灰石+沸石对稻田土壤中铅镉有效性及糙米中铅镉累积的影响[J]. 农业环境科学学报, 2016, 35(1):45-52.

    ZOU Z J, ZHOU H, WU Y J, et al. Effects of hydroxyapatite plus zeolite on bioavailability and rice bioaccumulation of Pb and Cd in soils[J]. Journal of Agro-Environment Science, 2016, 35(1):45-52(in Chinese).

    [25] 刘丽, 吴燕明, 周航,等. 大田条件下施加组配改良剂对蔬菜吸收重金属的影响[J]. 环境工程学报, 2015, 9(3):1489-1495.

    LIU L, WU YM, ZHOU H, et al. Effect of combined amendment on vegetable absorption of heavy metals under field conditions[J]. Chinese Journal of Environmental Engineering, 2015, 9(3):1489-1495(in Chinese).

    [26] 邢金峰, 仓龙, 葛礼强, 等. 纳米羟基磷灰石钝化修复重金属污染土壤的稳定性研究[J]. 农业环境科学学报, 2016, 35(7):1271-1277.

    XING J F, CANG LONG, GE L Q, et al. Long-term stability of immobilizing remediation of a heavy metal contaminated soil with nano-hydroxyapatite[J]. Journal of Agro-Environment Science, 2016, 35(7):1271-1277(in Chinese).

    [27] 辜娇峰, 周航, 吴玉俊, 等. 复合改良剂对稻田Cd、As活性与累积的协同调控[J]. 中国环境科学, 2016, 36(1):206-214.

    GU J F, ZHOU H, WU Y J, et al. Synergistic control of combined amendment on bioavailability and accumulation of Cd and As in rice paddy soil[J]. China Environmental Science, 2016, 36(1):206-214(in Chinese).

    [28] ZHONG W, CAI Z. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2):84-91.
    [29] EPELDE L, LANZ N A, BLANCO F, et al. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine[J]. FEMS Microbiology Ecology, 2015, 91(1):1-11.
    [30] 吕美蓉, 李忠佩, 刘明, 等. 长期有机无机肥配合施用土壤中添加不同肥料养分后土壤微生物短期变化[J]. 生态与农村环境学报, 2011, 27(4):69-73.

    LV M R, LI Z P, LIU M, et al. Short-term effects of addition of different nutrient elements on soil microbe in soil under long-term combined application of organic manure and inorganic fertilizer[J]. Journal of Ecology and Rural Environment, 2011, 27(4):69-73(in Chinese).

    [31] 崔红标, 范玉超, 周静, 等. 改良剂对土壤铜镉有效性和微生物群落结构的影响[J]. 中国环境科学,2016,36(1):197-205.

    CUI H B, FAN Y C, ZHOU J, et al. Availability of soil Cu and Cd and microbial community structure as affected by applications of amendments[J]. China Environmental Science, 2016, 36(1):197-205(in Chinese).

    [32] HUANG L M, YU G W, ZOU F Z, et al. Shift of soil bacterial community and decrease of metals bioavailability after immobilization of a multi-metal contaminated acidic soil by inorganic-organic mixed amendments:A field study[J]. Applied Soil Ecology, 2018, 130:104-119.
    [33] HMID A, CHAMI Z A, SILLEN W, et al. Olive mill waste biochar:a promising soil amendment for metal immobilization in contaminated soils[J]. Environmental Science and Pollution Research, 2015, 22(2):1444-1456.
    [34] 王彩云, 武春成, 曹霞, 等. 生物炭对温室黄瓜不同连作年限土壤养分和微生物群落多样性的影响[J]. 应用生态学报, 2019, 30(4):1359-1366.

    WANG C Y, WU C C, CAO X, et al. Effects of biochar on soil nutrition and microbial community diversity under continuous cultivated cucumber soils in greenhouse[J]. Chinese Journal of Applied Ecology, 2019, 30(4):1359-1366(in Chinese).

    [35] HUANG L M, YU G W, CAI X, et al. Immobilization of Pb, Cd, Cu and Zn in a multi-metal contaminated acidic soil using inorganic amendment mixtures[J]. International Journal of Environmental Research, 2017, 11:425-437.
    [36] GU H H, QIU H, TIAN T, et al. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil[J]. Chemosphere, 2011, 83:1234-1240.
  • 加载中
计量
  • 文章访问数:  1625
  • HTML全文浏览数:  1625
  • PDF下载数:  67
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-21

生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响

    通讯作者: 张迪, E-mail: zhangdi@njxzc.edu.cn
  • 南京晓庄学院环境科学学院, 南京, 211171
基金项目:

南京晓庄学院校级科研项目(2018NXY52),江苏省高校自然科学研究项目(19KJB610005)和江苏省自然科学基金面上项目(BK20161118)资助.

摘要: 以南京近郊某蔬菜基地土壤为研究对象,采用盆栽试验方法,研究熟石灰和生物炭两种钝化剂对镉铅复合污染土壤修复效果以及对土壤微生物活性的影响.结果表明,施加熟石灰和生物炭能够增加土壤pH和有机碳等养分含量,促进Cd、Pb由酸溶态向还原态和残渣态转化,降低Cd、Pb有效态含量.与对照处理相比,熟石灰和生物炭5.0%用量下,Cd有效态含量(DTPA、TCLP和CaCl2等3种提取态)分别下降37.74%—41.46%和22.22%—31.71%,Pb有效态含量分别下降45.59%—52.82%和35.47%—41.94%.生物炭的施用提高了土壤微生物量碳氮和微生物群落功能多样性,促进微生物对碳源的利用能力,其中生物炭5.0%用量下土壤微生物活性最高.熟石灰和生物炭的添加显著降低小白菜可食部位和根部对Cd、Pb的富集,与对照处理相比,可食部位Cd、Pb含量分别下降7.14%—47.62%和45.93%—74.82%,但所有添加钝化剂处理小白菜可食部位含量均超出国家安全食用标准.

English Abstract

参考文献 (36)

目录

/

返回文章
返回