空心菜对水中3种除草剂的去除作用
Effects of Water Spinach on the Removal of Three Herbicides in Water
-
摘要: 为探讨空心菜对水溶液中典型除草剂的去除作用,采用静态水培实验方法,研究了空心菜水培溶液中丙草胺、丁草胺和恶草酮3种除草剂去除的动力学过程、空心菜生长状况及空心菜对除草剂的富集情况。结果表明,在50~1 000 μg·L-1浓度下,空心菜在丙草胺和丁草胺水溶液中生长状况良好,但在较高浓度(≥250 μg·L-1)恶草酮水溶液中无法生长;在抑菌处理下,空心菜培养水溶液中丁草胺、丙草胺和恶草酮3种除草剂的平均去除率比无植物组分别提高了65.19%、70.49%和10.50%;丙草胺和丁草胺的去除过程基本符合一级动力学反应方程,且去除反应速率常数受除草剂浓度影响较为明显。植物组织中丙草胺和丁草胺在根中的残留浓度显著高于茎叶中。研究表明,空心菜能够促进水溶液中丙草胺和丁草胺的去除,植物代谢、吸收与根系吸附占主导作用。Abstract: In order to investigate the removal efficiency of the herbicides by water spinach (Ipomoea aquatica), the hydroponic culture was conducted to study the removal kinetics of three herbicides (pretilachlor, butachlor and oxadiazon). The growth status of plant and the herbicides enrichment by water spinach were also studied during this hydroponic culture process. The results showed that the water spinach grew well when the concentrations of pretilachlor and butachlor were between 50~1 000 μg·L-1, but it could not survive in the oxadiazon aqueous solution if oxadiazon concentration was greater than 250 μg·L-1. Compared with the control group (non-plant group), the removal efficiencies of pretilachlor, butachlor and oxadiazon in water spinach group were increased by 65.19%, 70.49%, and 10.50%, respectively. The removal processes of pretilachlor and butachlor accorded with the first-order kinetic reaction equation, and the removal reaction rate constant was significantly affected by the herbicide concentration. The pretilachlor and butachlor concentrations in roots were both significantly higher than that in stems and leaves. This study indicated that the water spinach could effectively remove the pretilachlor and butachlor in aqueous solution through growth metabolism and roots absorption.
-
Key words:
- herbicide /
- water spinach /
- phytoremediation
-
-
Herrero-Hernández E, Rodríguez-Cruz M S, Pose-Juan E, et al. Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain)[J]. Science of the Total Environment, 2017, 609:161-171 Souza D D, Machado S A S. Use of multiple square wave voltammetry for the detection of diquat herbicide in environmental water, foods and river sediments[J]. Journal of Analytical Chemistry, 2018, 73(6):593-601 Kamata M, Asami M, Matsui Y. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters[J]. Chemosphere, 2017, 178:333-339 严登华, 何岩, 王浩. 东辽河流域地表水体中Atrazine的环境特征[J]. 水处理信息报导, 2005(5):53-54 Yan D H, He Y, Wang H. Environmental characteristics of the atrazine in the waters in east Liaohe River basin[J]. Environmental Science, 2005 (5):53-54(in Chinese)
于志勇, 金芬, 李红岩, 等. 我国重点城市水源及水厂出水中乙草胺的残留水平[J]. 环境科学, 2014, 35(5):1694-1697 Yu Z Y, Jin F, Li H Y, et al. Residual levels of acetochlor in source water and drinking water of China's major cities[J]. Environmental Science, 2014, 35(5):1694-1697(in Chinese)
徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2):347-354 Xu X, Li C M, Sun J, et al. Residue characteristics and ecological risk assessment of twenty-nine pesticides in surface water of major river-basin in China[J]. Asian Journal of Ecotoxicology, 2016, 11(2):347-354(in Chinese)
黄晓丽, 高磊, 黄丽, 等. 哈尔滨地区养殖池塘中除草剂类农药残留及分布特征[J]. 水产学杂志, 2019, 32(2):37-43 Huang X L, Gao L, Huang L, et al. Residues and distribution characteristics of herbicides in aquaculture ponds in Harbin area[J]. Chinese Journal of Fisheries, 2019, 32(2):37-43(in Chinese)
李薪芳, 索亚萍, 楼鸳鸯, 等. 酰胺类除草剂对铜绿微囊藻的生长影响及氧化损伤效应[J]. 生态毒理学报, 2016, 11(1):239-247 Li X F, Suo Y P, Lou Y Y, et al. Effects of acetanilide herbicides on growth and oxidative damage of Microcystis aeruginosa[J]. Asian Journal of Ecotoxicology, 2016, 11(1):239-247(in Chinese)
陈兆杰, 宋世明, 雷雨豪, 等. 3种水稻除草剂对2种水生生物的急性毒性及安全性评价[J]. 农药, 2017, 56(11):819-823 Chen Z J, Song S M, Lei Y H, et al. Acute toxicities and safety assessment of three paddy field herbicides to two aquatic organisms[J]. Agrochemicals, 2017, 56(11):819-823(in Chinese)
瞿梦洁, 朱锋, 李慧冬, 等. 沉水植物对阿特拉津胁迫的毒理响应[J]. 生态毒理学报, 2018, 13(4):209-216 Qu M J, Zhu F, Li H D, et al. Toxicological responses of submerged macrophytes to atrazine exposure[J]. Asian Journal of Ecotoxicology, 2018, 13(4):209-216(in Chinese)
陈双, 王国祥, 许晓光, 等. 水生植物类型及生物量对污水处理厂尾水净化效果的影响[J]. 环境工程学报, 2018, 12(5):1424-1433 Chen S, Wang G X, Xu X G, et al. Influence of aquatic plant types and biomasses on purification effects of tail water of wastewater treatment plant[J]. Chinese Journal of Environmental Engineering, 2018, 12(5):1424-1433(in Chinese)
Moore M T, Bennett E R, Cooper C M, et al. Influence of vegetation in mitigation of methyl parathion runoff[J]. Environmental Pollution, 2006, 142(2):288-294 Rogers M R, Stringfellow W T. Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches[J]. Chemosphere, 2009, 75(1):109-114 夏会龙, 吴良欢, 陶勤南. 凤眼莲植物修复水溶液中甲基对硫磷的效果与机理研究[J]. 环境科学学报, 2002, 22(3):329-332 Xia H L, Wu L H, Tao Q N. Phytoremediation of methyl parathion by water hyacinth (Eichhorni crassipes Solms)[J]. Acta Scientiae Circumstantiae, 2002, 22(3):329-332(in Chinese)
夏会龙, 吴良欢, 陶勤南. 凤眼莲植物修复几种农药的效应[J]. 浙江大学学报:农业与生命科学版, 2002, 28(2):165-168 Xia H L, Wu L H, Tao Q N. Phytoremediation of some pesticides by water hyacinth (Eichhornia crassipes Solms)[J]. Journal of Zhejiang University:Agriculture & Life Science, 2002, 28(2):165-168(in Chinese)
傅以钢, 黄亚, 张亚雷, 等. 3种水生植物对水溶液中乐果的降解作用研究[J]. 农业环境科学学报, 2006, 25(1):90-94 Fu Y G, Huang Y, Zhang Y L, et al. Effects of three aquatic plants on the degradation of dimethoate in water[J]. Journal of Agro-Environment Science, 2006, 25(1):90-94(in Chinese)
王庆海, 阳娟, 武菊英, 等. 3种挺水植物对水体中毒死蜱去除的过程和效率分析[J]. 农业环境科学学报, 2010, 29(4):769-772 Wang Q H, Yang J, Wu J Y, et al. Phytoremediation of chlorpyrifos in aquatic environment by three emergent macrophytes[J]. Journal of Agro-Environment Science, 2010, 29(4):769-772(in Chinese)
Elsaesser D, Blankenberg A G B, Geist A, et al. Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands:Application of the toxic units approach[J]. Ecological Engineering, 2011, 37(6):955-962 Chu W K, Wong M H, Zhang J. Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.:I. Whole plant study[J]. Environmental Geochemistry and Health, 2006, 28(1-2):159-168 崔星怡, 秦俊豪, 李智鸣, 等. 不同品种空心菜对重污染土壤砷的吸收累积及其亚细胞分布[J]. 农业环境科学学报, 2017, 36(1):24-31 Cui X Y, Qin J H, Li Z M, et al. Accumulation and subcellular distribution of arsenic in water spinach (Ipomoea aquatic) cultivars from arsenic contaminated soil[J]. Journal of Agro-Environment Science, 2017, 36(1):24-31(in Chinese)
韩璐瑶, 吕锡武. 水生蔬菜型湿地植物对氮、磷营养盐的吸收动力学[J]. 环境工程学报, 2017, 11(5):2828-2835 Han L Y, Lv X W. Absorption kinetics of nitrogen and phosphorus in aquatic vegetables in wetland[J]. Chinese Journal of Environmental Engineering, 2017, 11(5):2828-2835(in Chinese)
谢静, 吕锡武, 李洁. 6种湿地植物吸收污水中氮和磷的动力学[J]. 环境工程学报, 2016, 10(8):4067-4072 Xie J, Lv X W, Li J. Uptake dynamics of N and P in polluted water by 6 different wetland plants[J]. Chinese Journal of Environmental Engineering, 2016, 10(8):4067-4072(in Chinese)
林剑华, 杨扬, 李丽, 等. 8种湿地植物的生长状况及泌氧能力[J]. 湖泊科学, 2015, 27(6):1042-1048 Lin J H, Yang Y, Li L, et al. Characteristics of growth and radial oxygen loss of eight wetland plants[J]. Journal of Lake Sciences, 2015, 27(6):1042-1048(in Chinese)
覃东立, 高磊, 黄晓丽, 等. 水体与底泥中有机氯和除草剂农药残留的气相色谱串联质谱同步测定方法[J]. 环境化学, 2017, 36(11):2366-2374 Qin D L, Gao L, Huang X L, et al. Simultaneous determination of organochlorine pesticides and herbicides residues in water and sediment by gas chromatography tandem mass spectrometry[J]. Environmental Chemistry, 2017, 36(11):2366-2374(in Chinese)
高磊, 覃东立, 吴松, 等. 用液相色谱串联质谱法测定渔业水样6种农药的含量[J]. 水产学杂志, 2017, 30(4):44-48 Gao L, Qin D L, Wu S, et al. Detection of six pesticides in fishery waters by liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Fisheries, 2017, 30(4):44-48(in Chinese)
Hadad H R, Maine M A, Bonetto C A. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment[J]. Chemosphere, 2006, 63(10):1744-1753 Yang C, Wang M, Chen H, et al. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants[J]. Journal of Environmental Sciences, 2011, 23(9):1437-1444 Abigail M E A, Samuel S M, Ramalingam C. Addressing the environmental impacts of butachlor and the available remediation strategies:A systematic review[J]. International Journal of Environmental Science and Technology, 2015, 12(12):4025-4036 严岩, 文波龙, 徐惠风. 丁草胺对湿地芦苇生长发育及土壤酶活性的影响[J]. 农药学学报, 2015, 17(6):674-679 Yan Y, Wen B L, Xu H F. Effects of butachlor on the reed growth and soil enzymatic activity in the wetland[J]. Chinese Journal of Pesticide Science, 2015, 17(6):674-679(in Chinese)
余保文, 朱诚. 丁草胺对镉胁迫条件下水稻生长、镉积累及活性氧代谢的影响[J]. 环境科学学报, 2008, 28(9):1878-1886 Yu B W, Zhu C. Effects of butachlor on the growth cadmium accumulation and oxidative metabolism of rice under Cd2+ stress[J]. Acta Scientiae Circumstantiae, 2008, 28(9):1878-1886(in Chinese)
Wang S R, Li H S, Lin C X. Physiological, biochemical and growth responses of Italian ryegrass to butachlor exposure[J]. Pesticide Biochemistry and Physiology, 2013, 106(1-2):21-27 吴慧明, 朱国念. 毒死蜱在灭菌和未灭菌土壤中的降解研究[J]. 农药学学报, 2003, 5(4):65-69 Wu H M, Zhu G N. Study on the degradation of chlorpyrifos in sterilized and nonsterilized soil[J]. Chinese Journal of Pesticide Science, 2003, 5(4):65-69(in Chinese)
Saha S, Dutta D, Karmakar R, et al. Structure-toxicity relationship of chloroacetanilide herbicides:Relative impact on soil microorganisms[J]. Environmental Toxicology and Pharmacology, 2012, 34(2):307-314 Yu Y L, Chen Y X, Luo Y M, et al. Rapid degradation of butachlor in wheat rhizosphere soil[J]. Chemosphere, 2003, 50(6):771-774 Usui K. Metabolism and selectivity of rice herbicides in plants[J]. Weed Biology and Management, 2001, 1(3):137-146 成水平, 况琪军, 夏宜琤. 香蒲、灯心草人工湿地的研究——Ⅰ.净化污水的效果[J]. 湖泊科学, 1997, 9(4):351-358 Cheng S P, Kuang Q J, Xia Y Z. Studies on artificial wetland with cattail (Typha angustifolia) and rush (Juncus effusus) (Ⅰ):The performance of purifying wastewater[J]. Journal of Lake Sciences, 1997, 9(4):351-358(in Chinese)
米合拜·伊力木拉提, 马晓利, 陈平, 等. 溴化1-丁基-3-甲基咪唑离子液体在空心菜中的吸收积累特性及其毒理效应[J]. 生态毒理学报, 2018, 13(6):307-315 Ilmurat M, Ma X L, Chen P, et al. Toxicity, uptake and translocation of ionic liquid 1-butyl-3-methymidazole bromide in Ipomoea aquatica Forsk[J]. Asian Journal of Ecotoxicology, 2018, 13(6):307-315(in Chinese)
蔡秋玲, 林大松, 王果, 等. 不同类型水稻镉富集与转运能力的差异分析[J]. 农业环境科学学报, 2016, 35(6):1028-1033 Cai Q L, Lin D S, Wang G, et al. Differences in cadmium accumulation and transfer capacity among different types of rice cultivars[J]. Journal of Agro-Environment Science, 2016, 35(6):1028-1033(in Chinese)
Felizeter S, Michael S M, Pim D V. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa)[J]. Environmental Science and Technology, 2012, 42(26):11735-11743 顾中言, 许小龙, 韩丽娟. 不同表面张力的杀虫单微乳剂药滴在水稻叶面的行为特性[J]. 中国水稻科学, 2004, 18(2):176-180 Gu Z Y, Xu X L, Han L J. Action of drops of monosultap ME with different surface tension on rice leaf[J]. Chinese Journal of Rice Science, 2004, 18(2):176-180(in Chinese)
-

计量
- 文章访问数: 5427
- HTML全文浏览数: 5427
- PDF下载数: 73
- 施引文献: 0