黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价

黄文平, 鲍轶凡, 胡霞林, 尹大强. 黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价[J]. 环境化学, 2020, (6): 1488-1495. doi: 10.7524/j.issn.0254-6108.2019101001
引用本文: 黄文平, 鲍轶凡, 胡霞林, 尹大强. 黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价[J]. 环境化学, 2020, (6): 1488-1495. doi: 10.7524/j.issn.0254-6108.2019101001
HUANG Wenping, BAO Yifan, HU Xialin, YIN Daqiang. Occurrence and ecological risk assessment of 31 endocrine disrupting chemicals in the water source of upstream Huangpu River[J]. Environmental Chemistry, 2020, (6): 1488-1495. doi: 10.7524/j.issn.0254-6108.2019101001
Citation: HUANG Wenping, BAO Yifan, HU Xialin, YIN Daqiang. Occurrence and ecological risk assessment of 31 endocrine disrupting chemicals in the water source of upstream Huangpu River[J]. Environmental Chemistry, 2020, (6): 1488-1495. doi: 10.7524/j.issn.0254-6108.2019101001

黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价

    通讯作者: 胡霞林, E-mail: xlhu@tongji.edu.cn
  • 基金项目:

    国家水体污染控制与治理科技重大专项(2017ZX07207002)和国家自然科学基金(21577103,21777122)资助.

Occurrence and ecological risk assessment of 31 endocrine disrupting chemicals in the water source of upstream Huangpu River

    Corresponding author: HU Xialin, xlhu@tongji.edu.cn
  • Fund Project: Supported by the National Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07207002)and the National Natural Science Foundation of China(21577103, 21777122).
  • 摘要: 本文研究了雄激素、雌激素、孕激素、糖皮质激素和工业化合物等5类31种环境内分泌干扰物(endocrine disrupting chemicals,EDCs)在黄浦江上游水源地中的空间分布特征,并采用风险熵值法(risk quotient,RQ)对水体中EDCs的生态风险进行了评价.黄浦江上游水源地9个采样点糖皮质激素和孕激素均未检出,工业化合物双酚类检出率100%.大多物质最高检出浓度<10 ng·L-1,而双酚A(BPA)检出浓度最高(26.00-64.32 ng·L-1).黄浦江以工业化合物和雌激素类物质污染为主,BPA为各采样点的主要污染物.莲西大桥EDCs总浓度最高(103.66 ng·L-1),水库入口总浓度最低(40.16 ng·L-1).太浦河上游工业化合物类浓度较下游高,雌激素类最高浓度检出点为汾湖大桥(11.70 ng·L-1).与国内外地表水中EDCs检出浓度比较,黄浦江上游水源地中EDCs处于中低等污染水平.对己烯雌酚(DES)、雌三醇(E3)、BPA、双酚S(BPS)等4种EDCs进行生态风险评价,RQ范围为0.006-2.5,BPS表现出较高的环境风险(RQ=2.5).
  • 加载中
  • [1] DARBRE P D. The history of endocrine-disrupting chemicals[J]. Current Opinion in Endocrine and Metabolic Research, 2019,7:26-33.
    [2] MURRAY A, RMECI B and P.C.LAI E, et al. Use of sub-micron sized resin particles for removal of endocrine disrupting compounds and pharmaceuticals from water and wastewater[J]. Journal of Environmental Sciences, 2017,51(1):256-264.
    [3] 华江环, 韩建, 郭勇勇, 等. 孕激素左炔诺孕酮长期低剂量暴露对雄性斑马鱼的生殖毒性[J]. 生态毒理学报, 2019,14(2):176-186.

    HUA J H, HAN J, GUO Y Y, et al. Reproductive toxicity of the progesterone levonorgestrel to male zebrafish after long-term low dose exposure[J].Asian Journal of Ecotoxicology, 2019,14(2):176-186(in Chinese).

    [4] HUANG Y, XIE X C, ZHOU L, et al. Multi-phase distribution and risk assessment of endocrine disrupting chemicals in the surface water of the Shaying River, -Huai River Basin, China[J]. Ecotoxicology and Environmental Safety, 2019,173:45-53.
    [5] 胡波,朱慧峰. 黄浦江上游水质评价因子的选择与评估[J]. 净水技术, 2016,35(3):54-57.

    HU B, ZHU H F. Selection and evaluation of water quality assessment factors in the upper reaches of Huangpu River[J]. Water Purification Technology, 2016,35(3):54-57(in Chinese).

    [6] 李青松, 高乃云, 马晓雁, 等. 上海市原水及地表水中SEs调查及风险评估[J]. 中国给水排水, 2013,29(15):146-149.

    LI Q S,GAO N Y,MA X Y, et al. Survey and risk assessment of SEs in raw water and surface water in Shanghai[J]. China Water Supply and Drainage, 2013,29(15):146-149(in Chinese).

    [7] 黄文平, 胡霞林,尹大强,等. 超高效液相色谱串联质谱同时快速检测环境水体中31种内分泌干扰物[J]. 环境化学, 2017,36(4):875-884.

    HUANG W P,HU X L,YIN D Q, et al. Rapid and simultaneous determination of 31 endocrine disrupting chemicals in aquatic environment by ultra performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2017,36(4):875-884(in Chinese).

    [8] 郑晓红. 近十年来黄浦江上游水源地水质状况及影响原因分析[J]. 仪器仪表与分析监测, 2006(4):42-46. ZHENG X H. Analysis of water quality status and influence causes of water sources in the upper reaches of Huangpu River in recent ten years[J]. Instrumentation and Analytical Monitoring, 2006

    (4):42-46(in Chinese).

    [9] CAREGHINI A, MASTORGIO A F, SAPONARO S, et al. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food:A review[J]. Environmental Science and Pollution Research, 2015,22(8):5711-5741.
    [10] SALGUEIRO-GONZÁLEZ N, CAMPILLO J A, VIÑAS L, et al. Occurrence of selected endocrine disrupting compounds in Iberian coastal areas and assessment of the environmental risk[J]. Environmental Pollution (Barking, Essex:1987), 2019,249:767-775.
    [11] PENGCHENG X, XIAN Z, DEFU X, et al. Contamination and risk assessment of estrogens in livestock manure:A case study in Jiangsu Province, China[J]. International Journal of Environmental Research and Public Health, 2018,15(1):125.
    [12] LIU D, LIU J, GUO M, et al. Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries[J]. Marine Pollution Bulletin, 2016,112(1):142-150.
    [13] XU W. Endocrine-disrupting chemicals in the Pearl River Delta and coastal environment:Sources, transfer, and implications[J]. Environmental Geochemistry and Health, 2014,36(6):1095-1104.
    [14] LIU Y H, ZHANG S H, JI G X, et al. Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section)[J]. Ecotoxicology & Environmental Safety, 2017,135:90-97.
    [15] DUAN X Y, LI Y X, LI X G, et al. Alkylphenols in surface sediments of the Yellow Sea and East China Sea inner shelf:Occurrence, distribution and fate[J]. Chemosphere, 2014,107:265-273.
    [16] YAMAZAKI E, YAMASHITA N, TANIYASU S, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology & Environmental Safety, 2015,122:565-572.
    [17] GORGA M, INSA S, PETROVIC M, et al. Occurrence and spatial distribution of EDCs and related compounds in waters and sediments of Iberian rivers[J]. Science of the Total Environment, 2015,s 503-504:69-86.
    [18] PIGNOTTI E, FARR M, BARCEL D, et al. Occurrence and distribution of six selected endocrine disrupting compounds in surface-and groundwaters of the Romagna area (North Italy)[J]. Environmental Science and Pollution Research, 2017,24(26):21153-21167.
    [19] JO O R M, CATARINA C, M RIO R, et al. Toxicological relevance of endocrine disruptors in the Tagus River estuary (Lisbon, Portugal)[J]. Environmental Monitoring and Assessment, 2015,187(8):483.
    [20] LIU D, LIU J, GUO M, et al. Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries[J]. Marine Pollution Bulletin, 2016,112(1-2):142-150.
    [21] HOPKINS K D, SHELTON W L and ENGLE C R. Estrogen sex-reversal of Tilapia aurea[J]. Aquaculture, 1979,18(3):263-268.
    [22] WANG Y, WANG Q, HU L, et al. Occurrence of estrogens in water, sediment and biota and their ecological risk in Northern Taihu Lake in China[J]. Environmental Geochemistry and Health, 2015,37(1):147-156.
    [23] NADERI M, WONG M Y,GHOLAMI F, et al. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults[J]. Aquatic Toxicology, 2014,148(2):195-203.
  • 加载中
计量
  • 文章访问数:  3694
  • HTML全文浏览数:  3694
  • PDF下载数:  128
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-10
黄文平, 鲍轶凡, 胡霞林, 尹大强. 黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价[J]. 环境化学, 2020, (6): 1488-1495. doi: 10.7524/j.issn.0254-6108.2019101001
引用本文: 黄文平, 鲍轶凡, 胡霞林, 尹大强. 黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价[J]. 环境化学, 2020, (6): 1488-1495. doi: 10.7524/j.issn.0254-6108.2019101001
HUANG Wenping, BAO Yifan, HU Xialin, YIN Daqiang. Occurrence and ecological risk assessment of 31 endocrine disrupting chemicals in the water source of upstream Huangpu River[J]. Environmental Chemistry, 2020, (6): 1488-1495. doi: 10.7524/j.issn.0254-6108.2019101001
Citation: HUANG Wenping, BAO Yifan, HU Xialin, YIN Daqiang. Occurrence and ecological risk assessment of 31 endocrine disrupting chemicals in the water source of upstream Huangpu River[J]. Environmental Chemistry, 2020, (6): 1488-1495. doi: 10.7524/j.issn.0254-6108.2019101001

黄浦江上游水源地中31种内分泌干扰物的分布特征以及生态风险评价

    通讯作者: 胡霞林, E-mail: xlhu@tongji.edu.cn
  • 1. 中海环境科技(上海)股份有限公司, 上海, 200135;
  • 2. 同济大学环境科学与工程学院, 上海, 200092
基金项目:

国家水体污染控制与治理科技重大专项(2017ZX07207002)和国家自然科学基金(21577103,21777122)资助.

摘要: 本文研究了雄激素、雌激素、孕激素、糖皮质激素和工业化合物等5类31种环境内分泌干扰物(endocrine disrupting chemicals,EDCs)在黄浦江上游水源地中的空间分布特征,并采用风险熵值法(risk quotient,RQ)对水体中EDCs的生态风险进行了评价.黄浦江上游水源地9个采样点糖皮质激素和孕激素均未检出,工业化合物双酚类检出率100%.大多物质最高检出浓度<10 ng·L-1,而双酚A(BPA)检出浓度最高(26.00-64.32 ng·L-1).黄浦江以工业化合物和雌激素类物质污染为主,BPA为各采样点的主要污染物.莲西大桥EDCs总浓度最高(103.66 ng·L-1),水库入口总浓度最低(40.16 ng·L-1).太浦河上游工业化合物类浓度较下游高,雌激素类最高浓度检出点为汾湖大桥(11.70 ng·L-1).与国内外地表水中EDCs检出浓度比较,黄浦江上游水源地中EDCs处于中低等污染水平.对己烯雌酚(DES)、雌三醇(E3)、BPA、双酚S(BPS)等4种EDCs进行生态风险评价,RQ范围为0.006-2.5,BPS表现出较高的环境风险(RQ=2.5).

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回