基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较

周鑫, 陈粉丽, 刘雪媛, 钱瑞, 王生晖, 武茜茜. 基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较[J]. 环境化学, 2021, (4): 1179-1186. doi: 10.7524/j.issn.0254-6108.2019110701
引用本文: 周鑫, 陈粉丽, 刘雪媛, 钱瑞, 王生晖, 武茜茜. 基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较[J]. 环境化学, 2021, (4): 1179-1186. doi: 10.7524/j.issn.0254-6108.2019110701
ZHOU Xin, CHEN Fenli, LIU Xueyuan, QIAN Rui, WANG Shenghui, WU Xixi. Analysis and comparison of simulated stable isotopes of precipitation in the Loess Plateau based on GCMs[J]. Environmental Chemistry, 2021, (4): 1179-1186. doi: 10.7524/j.issn.0254-6108.2019110701
Citation: ZHOU Xin, CHEN Fenli, LIU Xueyuan, QIAN Rui, WANG Shenghui, WU Xixi. Analysis and comparison of simulated stable isotopes of precipitation in the Loess Plateau based on GCMs[J]. Environmental Chemistry, 2021, (4): 1179-1186. doi: 10.7524/j.issn.0254-6108.2019110701

基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较

    通讯作者: 陈粉丽, E-mail: chenfenli1102@163.com
  • 基金项目:

    甘肃省高等学校协同创新团队项目(2018C-02)资助.

Analysis and comparison of simulated stable isotopes of precipitation in the Loess Plateau based on GCMs

    Corresponding author: CHEN Fenli, chenfenli1102@163.com
  • Fund Project: Supported by Collaborative Innovation Team Project in Colleges and Universities of Gansu(2018C-02).
  • 摘要: 降水中的稳定同位素作为研究水循环中的重要组成部分,可综合反映出自然地理环境及气候变化.本文依据1980-2007年第二次稳定水同位素比较小组SWING2中的5种大气环流模式(GCM)与全球降水同位素观测信息网(GNIP)实测数据,分析比较了黄土高原区降水稳定同位素的季节性时空特征变化.研究结果表明,由LMDZ(free)模拟的当地大气水线δD=7.448×δ18O+3.608更接近于实测结果,而MIROC模拟的LMWL相关系数R2高达0.999;5种GCM模拟中的δ18O与δD均表现出明显的季节变化,即夏季大于冬季.d值结果再次验证了该区域夏季具有高湿度、蒸发慢、低d值,而冬季具有湿度低、蒸发快、高d值的特点.在纬度效应分析中,高纬度较低纬度中的δ18O值明显偏低.
  • [1] 胡勇博,肖薇,钱雨妃,等. 水汽源地和局地蒸发对大气降水氢氧稳定同位素组成的影响[J]. 环境科学,2019,40(2):573-581.

    HU Y B,XIAO W,QIAN Y F,et al.Effects of water vapor source and local evaporation on the stable hydrogen and oxygen isotopic compositions of precipitation[J]. Environmental Science,2019,40(2):573-581(in Chinese).

    [2] 郭政昇,郑国璋,赵培,等. 水汽源区变化对黄河中游降水稳定同位素的影响[J]. 自然资源学报,2018,33(11):1979-1991.

    GUO Z S,ZHENG G Z,ZHAO P,et al.Effect of variation in water source area on stable isotopes in precipitation in the middle reach of the Yellow River basin[J]. Journal of Natural Resources,2018,33(11):1979-1991(in Chinese).

    [3] DANSGAARD W. The abundance of δ18O in atmospheric water and water vapor[J]. Tellus,1953,5(4):461-469.
    [4] 章新平,刘晶淼,田立德,等.亚洲降水中δ18O沿不同水汽输送路径的变化[J].地理学报,2004,59(5):699-708.

    ZHANG X P,LIU J M,TIAN L D,et al. Variations of δ18O in precipitation along vapor transport paths over Asia[J]. Journal of Geographical Sciences,2004,59(5):699-708(in Chinese).

    [5] 李宗省,冯起,李宗杰,等.祁连山北坡稳定同位素生态水文学研究的初步进展与成果应用[J]. 冰川冻土,2019,41(5):1044-1052.

    LI Z S,FENG Q,LI Z J,et al. Preliminary progress of ecohydrology based on stable isotope tracing in the northern Qilian Mountains and its applications[J]. Journal of Glaciology and Geocryology,2019,41(5):1044-1052(in Chinese).

    [6] 章新平,刘晶淼,孙维贞,等.中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J]. 中国科学(地球科学),2006,36(9):850-859. ZHANG X P,LIU J M,SUN W Z,et al. Study on relationship between stable oxygen isotope in precipitation and relative metrological parameters in southwest China[J]. Scientia Sinica(Terrae),2006,36(9):850-859(in Chinese).
    [7] THOMPSON L G,YAO T D,THOMPSON E M,et al. A high-resolution millennial record of the south Asian monsoon from Himalayan Ice Cores[J]. Science,2000,289:1916-1919.
    [8] DANSGAARD W. Stable isotopes in precipitation[J]. Tellus,1964,16(4):436-468.
    [9] JOUSSAUME S,SADOURNY R,JOUZEL J. A general circulation model of water isotope cycles in the atmosphere[J]. Nature,1984,311(5981):24-29.
    [10] YAO T D,MASSON-DELMOTTE V,GAO J,et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau:Observations and simulations[J]. Reviews of Geophysics,2013,51(4):525-548.
    [11] WANG S J,ZHANG M J,CHEN F L,et al. Comparison of GCM-simulated isotopic compositions of precipitationin arid central Asia[J]. Journal of Geographical Sciences,2015,25(7):771-783.
    [12] 王毅荣,吕世华. 黄土高原降水对气候暖响应的敏感性研究[J].冰川冻土,2008,30(1):43-51.

    WANG Y R,LV S H. Sensitivity analysis of the response of precipitation to climate change over China Loess Plateau[J]. Journal of Glaciology and Geocryology,2008,30(1):43-51(in Chinese).

    [13] 贺强,孙从建,吴丽娜,等.基于GNIP的黄土高原区大气降水同位素特征研究[J]. 水文,2018,38(1):58-66.

    HE Q,SUN C J,WU L N,et al. Study on isotopic characteristics of atmospheric precipitation in Loess Plateau Based on GNIP[J]. Journal Of China Hydrology,2018,38(1):58-66(in Chinese).

    [14] 陈曦,李志,程立平,等.黄土塬区大气降水的氢氧稳定同位素特征及水汽来源[J]. 生态学报,2016,36(1):98-106.

    CHEN X,LI Z,CHENG L P,et al. Analysis of stable isotopic composition and vapor source of precipitation at the Changwu Loess Tableland[J]. Acta Ecologica Sinica,2016,36(1):98-106(in Chinese).

    [15] 刘杨民,张明军,王圣杰,等. 基于GCM的西北干旱区降水稳定氢氧同位素年际变化模拟[J]. 水土保持研究,2016,23(1):260-267.

    LIU Y M,ZHANG M J,WANG S J,et al. Interannual variation of stable hydrogen and oxygen isotopes in precipitation in Arid North west China Based on GCMs[J].Research of Soil and Water Conservation,2016,23(1):260-267(in Chinese).

    [16] RISI C,LANDAIS A,WINKLER R,et al. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model[J]. Climate of the Past, 2013,9(5):2173-3193.
    [17] SCHMIDT G A,LGRANDE A N,Hoffmann G. Water isotope expressions of intrinsic and forced variability in acoupled ocean-atmosphere model[J]. Journal of Geophysical Research Atmospheres,2007,112(D10):185-194.
    [18] YOSHIMURA K,SATO K,AOI N,et al. Cell-assisted lipotransfer for cosmetic breast augmentation supportive use of adipose-derived stem/stromal cells[J]. Aesthetic Plastic Surgery,2008,32(1):48-55.
    [19] KURITAL N,NOONE D,RISI C,et al. Intraseasonal isotopic variation associated with the Madden-Julian Oscillation[J]. Journal of Geophysical Research Atmospheres,2011,116(24):148-227.
    [20] CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702-1703.
    [21] 郑淑蕙,侯发高,倪葆龄. 我国大气降水的氢氧稳定同位素研究[J].科学通报,1983,28(13):801-806.

    ZHENG S H,HOU F G,NI B L. The research of hydrogen and oxygen stable isotopes in precipitation in China[J]. Chinese Science Bul-letin,1983,28(13):801-806(in Chinese).

    [22] 李小飞,张明军,王圣杰,等. 黄河流域大气降水氢、氧稳定同位素时空特征及其环境意义[J]. 地质学报,2013,87(2):269-277.

    LI X F,ZHANG M J,WANG S J,et al. Spatial and temporal variations of hydrogen and oxygen isotopes in precipitation in the Yellow River Basin and its environmental significance[J]. Acta Geologica Sinica,2013,87(2):269-277(in Chinese).

    [23] 马潜,张明军,王圣杰,等. 基于氢氧同位素的中国东南部降水局地蒸发水汽贡献率[J]. 地理科学进展,2013,32(11):1712-1720.

    MA Q,ZHANG M J,WANG S J,et al. Contributions of moisture from local evaporation to precipitations in southeast China based on hydrogen and oxygen isotopes[J]. Progress in Geography,2013,32(11):1712-1720(in Chinese).

    [24] HUGHES C E,CRAWFORD J.Spatial and temporal variation in precipitation isotopes in the Sydney Basin,Australia[J]. Journal of Hydrology,2013,489:42-55.
    [25] 李学礼,刘金辉,史维浚,等. 新疆准噶尔盆地北部天然水的同位素研究及其应用[J]. 地球学报,2000,21(4):401-406.

    LI X L,LIU J H,SHI W J,et al.The isotopic study and application of natural water in northern Zhunggar Basin,Xinjiang[J]. ACTA GEOSCIENTIA SINICA,2000,21(4):401-406(in Chinese).

    [26] 刘洁遥,张福平,冯起,等. 陕甘宁地区降水稳定同位素特征及水汽来源[J]. 应用生态学报,2019,30(7):2191-2200.

    LIU J Y,ZHANG F P,FENG Q,et al.Stable isotopes characteristics of precipitation over Shaanxi-Gansu-Ningxia and its water vapor sources[J]. Chinese Journal of Applied Ecology,2019,30(7):2191-2200(in Chinese).

    [27] 胡可,陈洪,聂云鹏,等. 桂西北喀斯特峰丛洼地降水氢氧稳定同位素的季节变化特征[J]. 农业工程学报,2013,29(5):53-62.

    HU K,CHEN H,NIE Y P,et al.Characteristics of seasonal variation of deuterium and oxygen-18 isotope composition of precipitation in karst peak-cluster depression area,northwest Guangxi of China[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(5):53-62(in Chinese).

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-030Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 7.0 %DOWNLOAD: 7.0 %HTML全文: 81.9 %HTML全文: 81.9 %摘要: 11.1 %摘要: 11.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 96.5 %其他: 96.5 %XX: 1.6 %XX: 1.6 %兰州: 0.6 %兰州: 0.6 %内网IP: 0.2 %内网IP: 0.2 %北京: 0.2 %北京: 0.2 %杭州: 0.2 %杭州: 0.2 %深圳: 0.4 %深圳: 0.4 %郑州: 0.2 %郑州: 0.2 %长春: 0.2 %长春: 0.2 %其他XX兰州内网IP北京杭州深圳郑州长春Highcharts.com
计量
  • 文章访问数:  1559
  • HTML全文浏览数:  1559
  • PDF下载数:  81
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-07
周鑫, 陈粉丽, 刘雪媛, 钱瑞, 王生晖, 武茜茜. 基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较[J]. 环境化学, 2021, (4): 1179-1186. doi: 10.7524/j.issn.0254-6108.2019110701
引用本文: 周鑫, 陈粉丽, 刘雪媛, 钱瑞, 王生晖, 武茜茜. 基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较[J]. 环境化学, 2021, (4): 1179-1186. doi: 10.7524/j.issn.0254-6108.2019110701
ZHOU Xin, CHEN Fenli, LIU Xueyuan, QIAN Rui, WANG Shenghui, WU Xixi. Analysis and comparison of simulated stable isotopes of precipitation in the Loess Plateau based on GCMs[J]. Environmental Chemistry, 2021, (4): 1179-1186. doi: 10.7524/j.issn.0254-6108.2019110701
Citation: ZHOU Xin, CHEN Fenli, LIU Xueyuan, QIAN Rui, WANG Shenghui, WU Xixi. Analysis and comparison of simulated stable isotopes of precipitation in the Loess Plateau based on GCMs[J]. Environmental Chemistry, 2021, (4): 1179-1186. doi: 10.7524/j.issn.0254-6108.2019110701

基于大气环流模式(GCM)的黄土高原区降水稳定同位素模拟分析比较

    通讯作者: 陈粉丽, E-mail: chenfenli1102@163.com
  • 西北师范大学地理与环境科学学院, 兰州, 730070
基金项目:

甘肃省高等学校协同创新团队项目(2018C-02)资助.

摘要: 降水中的稳定同位素作为研究水循环中的重要组成部分,可综合反映出自然地理环境及气候变化.本文依据1980-2007年第二次稳定水同位素比较小组SWING2中的5种大气环流模式(GCM)与全球降水同位素观测信息网(GNIP)实测数据,分析比较了黄土高原区降水稳定同位素的季节性时空特征变化.研究结果表明,由LMDZ(free)模拟的当地大气水线δD=7.448×δ18O+3.608更接近于实测结果,而MIROC模拟的LMWL相关系数R2高达0.999;5种GCM模拟中的δ18O与δD均表现出明显的季节变化,即夏季大于冬季.d值结果再次验证了该区域夏季具有高湿度、蒸发慢、低d值,而冬季具有湿度低、蒸发快、高d值的特点.在纬度效应分析中,高纬度较低纬度中的δ18O值明显偏低.

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回