外加碳源对抗生素诱导大肠杆菌Hormesis效应的调控作用
Regulation of External Carbon Source on Antibiotic-induced Hormetic Effect in Escherichia coli
-
摘要: 抗生素对细菌通常表现出“低促高抑”的Hormesis效应,这显著影响了抗生素的生态风险评估。目前关于抗生素诱导细菌Hormesis效应的研究多集中于单一碳源条件,针对多种碳源共存条件的相关研究还十分有限。因此,为进一步探究外加碳源对抗生素诱导细菌Hormesis效应的影响,本文以大肠杆菌(Escherichia coli, E. coli)为受试生物,在外加不同浓度葡萄糖的Mueller-Hinton培养基中测定了盐酸四环素(tetracycline hydrochloride, TCH)和2(5H)-呋喃酮(2(5H)-furanone, 2F)2种抗生素单一及联合暴露对E. coli生长的毒性效应,并分析了外加葡萄糖与抗生素对E. coli生长的交互效应。结果表明,TCH和2F单一及联合暴露均能诱导E. coli产生Hormesis效应,随着外加葡萄糖浓度的升高,TCH、2F和TCH+2F在低浓度下对E. coli生长的促进作用逐渐增强,最大促进率分别由47.66%、9.08%、5.63%增加到158.65%、40.20%、21.30%;在高浓度下对E. coli生长的抑制作用逐渐减弱,EC50值分别从3.17E-05、1.62E-02、3.71E-03 mol·L-1增加到9.24E-05、4.10E-02、1.01E-02 mol·L-1;外加葡萄糖与抗生素对抑制E. coli生长的交互效应总体上呈拮抗作用,且随着外加葡萄糖浓度升高拮抗作用也随之增强,可以看出外加碳源能够降低抗生素的细菌毒性。本研究可为从外界营养条件角度更加全面评估抗生素的Hormesis效应及生态风险提供参考和数据支持。
-
关键词:
- 抗生素 /
- 大肠杆菌 /
- Hormesis效应 /
- 碳源 /
- 葡萄糖
Abstract: Antibiotics usually trigger hormetic effects on bacteria that exhibit low-dose stimulation and high-dose inhibition, which significantly influence the ecological risk assessment of antibiotics. Currently, the studies regarding the hormesis effects of antibiotics on bacteria have been always conducted under the condition of single carbon source, while the related researches rarely consider the condition of multiple carbon sources. In this study, Escherichia coli (E. coli) was used as the test organism to further explore the influence of the added carbon source on the hormetic phenomena in bacteria induced by antibiotics. Under the culture conditions of Mueller-Hinton medium with added different concentrations of glucose, the single and combined toxicity of tetracycline hydrochloride (TCH) and 2(5H)-furanone (2F) was determined using the growth of E. coli as the endpoint, where the interaction effects between added glucose and antibiotics on E. coli growth were also analyzed. The results showed that TCH, 2F and their mixture could all induced the hormetic effects on E. coli. With the increase of the added glucose, the low-dose stimulatory effects of TCH, 2F and TCH+2F on E. coli growth gradually increased, while the high-dose inhibitory effects gradually weakened. The maximum stimulatory rates of TCH, 2F and TCH+2F increased from 47.66% to 158.65%, from 9.08% to 40.20%, and from 5.63% to 21.30%, respectively. The EC50 values of TCH, 2F and TCH+2F increased from 3.17E-05 mol·L-1 to 9.24E-05 mol·L-1, from 1.62E-02 mol·L-1 to 4.10E-02 mol·L-1, and from 3.71E-03 mol·L-1 to 1.01E-02 mol·L-1, respectively. The interaction effects between added glucose and antibiotics on E. coli growth were generally antagonism, which enhanced with the increase of added glucose. These results indicated that added carbon source could reduce the bacterial toxicity of antibiotics. This study can provide reference and data support for a more comprehensive assessment of antibiotics’ hormesis and their ecological risk from the perspective of external nutritional condition.-
Key words:
- antibiotic /
- Escherichia coli /
- Hormesis /
- carbon sources /
- glucose
-
-
Grenni P, Ancona V, Barra Caracciolo A. Ecological effects of antibiotics on natural ecosystems: A review [J]. Microchemical Journal, 2018, 136: 25-39 Calabrese E J, Baldwin L A. Toxicology rethinks its central belief [J]. Nature, 2003, 421(6924): 691-692 于岩, 游瑞容, 姚志峰, 等. 氯霉素对费氏弧菌0~24h的Hormesis效应及其机制初探[J]. 同济大学学报(自然科学版), 2016, 44(5 ): 767-772 Yu Y, You R R, Yao Z F, et al. Chloramphenicol hormesis effects about time-dependent and mechanism on Vibrio fischeri [J]. Journal of Tongji University (Natural Science), 2016, 44(5): 767-772 (in Chinese)
Shen H Y, Liu Y Y, Liu Y N, et al. Hormetic dose-responses for silver antibacterial compounds, quorum sensing inhibitors, and their binary mixtures on bacterial resistance of Escherichia coli [J]. Science of the Total Environment, 2021, 786: 147464 宋春磊, 方淑霞, 周虹, 等. 抗生素单一及联合暴露对RP4质粒介导的抗性基因水平转移的Hormesis效应研究[J]. 生态毒理学报, 2017, 12(1): 148-154 Song C L, Fang S X, Zhou H, et al. Hormesis effect of single and combined exposure of antibiotics on antibiotic resistance gene transfer mediated by RP4 plasmid [J]. Asian Journal of Ecotoxicology, 2017, 12(1): 148-154 (in Chinese)
Tang L A, Zhou Y, Zhang Y L, et al. The role of energy source or substrate in microbial hormesis [J]. Current Opinion in Toxicology, 2022, 29: 10-18 Towbin B D, Korem Y, Bren A, et al. Optimality and sub-optimality in a bacterial growth law [J]. Nature Communications, 2017, 8: 14123 Pacciani-Mori L,Giometto A, Suweis S, et al. Dynamic metabolic adaptation can promote species coexistence in competitive microbial communities [J]. PLoS Computational Biology, 2020, 16(5): e1007896 Saitanis C J, Agathokleous E. Stress response and population dynamics: Is Allee effect hormesis? [J]. The Science of the Total Environment, 2019, 682: 623-628 Heo J M, Kim H J, Lee S J. Efficient anaerobic consumption of D-xylose byE. coli BL21(DE3) via xylR adaptive mutation [J]. BMC Microbiology, 2021, 21(1): 332 Sauvage S, Gaviard C, Tahrioui A, et al. Impact of carbon source supplementations on Pseudomonas aeruginosa physiology [J]. Journal of Proteome Research, 2022, 21(6): 1392-1407 Gurevitch J, Morrow L L, Wallace A, et al. A meta-analysis of competition in field experiments [J]. The American Naturalist, 1992, 140(4): 539-572 Crain C M, Kroeker K, Halpern B S. Interactive and cumulative effects of multiple human stressors in marine systems [J]. Ecology Letters, 2008, 11(12): 1304-1315 Zhou L Y, Zhou X H, Shao J J, et al. Interactive effects of global change factors on soil respiration and its components: A meta-analysis [J]. Global Change Biology, 2016, 22(9): 3157-3169 Deng Z Q, Lin Z F, Zou X M, et al. Model of hormesis and its toxicity mechanism based on quorum sensing: A case study on the toxicity of sulfonamides to Photobacterium phosphoreum [J]. Environmental Science & Technology, 2012, 46(14): 7746-7754 Bureš M S,Cvetnić M, Miloloža M, et al. Modeling the toxicity of pollutants mixtures for risk assessment: A review [J]. Environmental Chemistry Letters, 2021, 19(2): 1629-1655 刘树深, 刘玲, 陈浮. 浓度加和模型在化学混合物毒性评估中的应用[J]. 化学学报, 2013, 71(10): 1335-1340 Liu S S, Liu L, Chen F. Application of the concentration addition model in the assessment of chemical mixture toxicity [J]. Acta Chimica Sinica, 2013, 71(10): 1335-1340 (in Chinese)
Mahadevan R, Edwards J S, Doyle F J. Dynamic flux balance analysis of diauxic growth in Escherichia coli [J]. Biophysical Journal, 2002, 83(3): 1331-1340 Görke B, Stülke J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients [J]. Nature Reviews Microbiology, 2008, 6(8): 613-624 Enjalbert B, Cocaign-Bousquet M, Portais J C, et al. Acetate exposure determines the diauxic behavior of Escherichia coli during the glucose-acetate transition [J]. Journal of Bacteriology, 2015, 197(19): 3173-3181 Bren A, Park J O, Towbin B D, et al. Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP [J]. Scientific Reports, 2016, 6: 24834 Chubukov V, Sauer U. Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli [J]. Applied and Environmental Microbiology, 2014, 80(9): 2901-2909 Sun H Y, Zhang X Y, Wang D L, et al. Insights into the role of energy source in hormesis through diauxic growth of bacteria in mixed cultivation systems [J]. Chemosphere, 2020, 261: 127669 Liu Y, Fang D, Yang K N, et al. Sodium dehydroacetate confers broad antibiotic tolerance by remodeling bacterial metabolism [J]. Journal of Hazardous Materials, 2022, 432: 128645 -

计量
- 文章访问数: 1399
- HTML全文浏览数: 1399
- PDF下载数: 114
- 施引文献: 0