微囊藻毒素异构体产生的调控因子及其在自然水体中分布的研究进展
Advances on Regulation Impact Factors and Geographical Distribution of Microcystin Congeners
-
摘要: 微囊藻毒素(microcystins,MCs)是一种蓝藻细胞内次级代谢产物,在世界范围内广泛分布,根据其肽链的修饰或所含氨基酸的类型不同,已发现并命名了200多种异构体。各种异构体之间急性毒性差异较大,因此其组成和浓度决定了自然水体中MCs的最终毒性,影响MCs异构体产生的调控因子也成为了如今研究的热点。从遗传角度看,非核糖体肽合成酶的特性、基因重组和基因突变等导致的产毒基因(mcy)编码差异直接造成不同MCs异构体的产生;从环境角度看,光照、温度和营养元素等因子可能通过改变结合位点结构、引起氧化应激和影响藻类生长代谢等方式调控MCs异构体合成。本文根据国内外已有研究成果,对MCs异构体的分布特征以及调控因子的影响机制等方面的研究现状进行了总结归纳,并对未来研究方向进行了展望,以期通过正确认识MCs的产生及转化过程,从而更好地评价其造成的环境风险,为制定相应的消除或减低风险的规避策略提供理论依据。Abstract: Microcystins (MCs), a kind of intracellular toxic secondary metabolites produced by cyanobacteria species, are ubiquitous worldwide. To date, more than 200 microcystin congeners differing in modifications of the peptide backbone or the type of amino acids incorporated have been identified. Due to the great differences in acute toxicity between different congeners, the actual toxicity of MCs in the environment is finally determined by the composition and concentrations of MC congeners. These findings raise intense research on distribution features and regulatory mechanisms involved in MC congeners. Considering the fact of genetics, nonribosomal peptide synthetase (NRPSs) characteristics, genetic recombination, genetic mutation could cause the differences of MC synthetase gene clusters (mcy) encoding, resulting in the production of MC congeners. Besides, environmental factors including light, temperature and nutrients could regulate the synthesis of MC congeners by changing the structure of the binding site, inducing oxidative stress and affecting the growth and metabolism of algae. Thus, this review summarized the advances on research of MC congeners focusing on the structures and properties, geographic distribution, genetic factors and environmental factors that regulate their production. This paper also highlights the future research emphases for better understanding the process of MCs production and transformation, assessing the potential ecological risk, and providing basic theoretical support for formulating risk resistance strategy.
-
Key words:
- microcystins /
- congeners /
- mechanism of toxicant producing /
- genetic factors /
- environmental factors
-
-
Díez-Quijada L, Puerto M, Gutiérrez-Praena D, et al. Microcystin-RR:Occurrence, content in water and food and toxicological studies. A review[J]. Environmental Research, 2019, 168:467-489 Hinojosa M G, Gutiérrez-Praena D, Prieto A I, et al. Neurotoxicity induced by microcystins and cylindrospermopsin:A review[J]. Science of the Total Environment, 2019, 668:547-565 国晓春, 卢少勇, 谢平, 等. 微囊藻毒素的环境暴露、毒性和毒性作用机制研究进展[J]. 生态毒理学报, 2016, 11(3):61-71 Guo X C, Lu S Y, Xie P, et al. Environmental exposure, toxicity and toxic mechanism of microcystins:A review[J]. Asian Journal of Ecotoxicology, 2016, 11(3):61-71(in Chinese)
Tillett D, Dittmann E, Erhard M, et al. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806:An integrated peptide-polyketide synthetase system[J]. Chemistry & Biology, 2000, 7(10):753-764 Mello F D, Braidy N, Marçal H, et al. Mechanisms and effects posed by neurotoxic products of cyanobacteria/microbial eukaryotes/dinoflagellates in algae blooms:A review[J]. Neurotoxicity Research, 2018, 33(1):153-167 Su X M, Steinman A D, Xue Q J, et al. Evaluating the contamination of microcystins in Lake Taihu, China:The application of equivalent total MC-LR concentration[J]. Ecological Indicators, 2018, 89:445-454 Meriluoto J, Spoof L, Codd G A. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis[M]. John Wliley & Sons, Ltd., 2018:1405-1406 Cerasino L, Salmaso N. Diversity and distribution of cyanobacterial toxins in the Italian subalpine lacustrine district[J]. Oceanological and Hydrobiological Studies, 2012, 41(3):54-63 Harke M J, Steffen M M, Gobler C J, et al. A review of the global ecology, genomics, and biogeography of the toxic Cyanobacterium, Microcystis spp.[J]. Harmful Algae, 2016, 54:4-20 Zhang D W, Liao Q G, Zhang L, et al. Occurrence and spatial distributions of microcystins in Poyang Lake, the largest freshwater lake in China[J]. Ecotoxicology, 2015, 24(1):19-28 Su X M, Xue Q J, Steinman A D, et al. Spatiotemporal dynamics of microcystin variants and relationships with environmental parameters in Lake Taihu, China[J]. Toxins, 2015, 7(8):3224-3244 余丽, 朱广伟, 孔繁翔, 等. 巢湖微囊藻毒素异构体组成的时空分布特征及影响因子[J]. 湖泊科学, 2019, 31(3):700-713 Yu L, Zhu G W, Kong F X, et al. Spatiotemporal characteristics of microcystin variants composition and associations with environmental parameters in Lake Chaohu, China[J]. Journal of Lake Sciences, 2019,31(3):700-713(in Chinese)
Deblois C P, Juneau P. Comparison of resistance to light stress in toxic and non-toxic strains of Microcystis aeruginosa (cyanophyta)(1)[J]. Journal of Phycology, 2012, 48(4):1002-1011 Taranu Z E, Pick F R, Creed I F, et al. Meteorological and nutrient conditions influence microcystin congeners in freshwaters[J]. Toxins, 2019, 11(11):620 He Q, Kang L, Sun X F, et al. Spatiotemporal distribution and potential risk assessment of microcystins in the Yulin River, a tributary of the Three Gorges Reservoir, China[J]. Journal of Hazardous Materials, 2018, 347:184-195 Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells[J]. International Journal of Molecular Sciences, 2010, 11(1):268-287 Chen L, Chen J, Zhang X Z, et al. A review of reproductive toxicity of microcystins[J]. Journal of Hazardous Materials, 2016, 301:381-399 Li J M, Li R H, Li J. Current research scenario for microcystins biodegradation-A review on fundamental knowledge, application prospects and challenges[J]. Science of the Total Environment, 2017, 595:615-632 何君, 张欣然, 杨欣. 化学氧化法去除微囊藻毒素的研究进展[J]. 化学通报, 2018, 81(11):981-985 , 991 He J, Zhang X R, Yang X. Progress in the removal of microcystins by chemical oxidation[J]. Chemistry, 2018, 81(11):981-985, 991(in Chinese)
王逸飞, 倪利晓, 岳菲菲, 等. 环境水体微囊藻毒素的光催化降解途径与机制研究[J]. 环境科技, 2020, 33(1):7-12 Wang Y F, Ni L X, Yue F F, et al. Photocatalytic degradation pathway and mechanism of microcystins in environmental water[J]. Environmental Science and Technology, 2020, 33(1):7-12(in Chinese)
Pivokonsky M, Kloucek O, Pivokonska L. Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter[J]. Water Research, 2006, 40(16):3045-3052 Dittmann E, Neilan B A, Erhard M, et al. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806[J]. Molecular Microbiology, 1997, 26(4):779-787 Christiansen G, Kurmayer R, Liu Q, et al. Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp.[J]. Applied and Environmental Microbiology, 2006, 72(1):117-123 Kaebernick M, Dittmann E, Börner T, et al. Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial nonribosomal peptide[J]. Applied and Environmental Microbiology, 2002, 68(2):449-455 Cullen A, Pearson L A, Mazmouz R, et al. Heterologous expression and biochemical characterisation of cyanotoxin biosynthesis pathways[J]. Natural Product Reports, 2019, 36(8):1117-1136 Xie L Q, Park H D. Determination of microcystins in fish tissues using HPLC with a rapid and efficient solid phase extraction[J]. Aquaculture, 2007, 271(1-4):530-536 Zhang X Y, Cai X X, Zhang X Y, et al. Simultaneous rapid determination of 12 microcystins and one nodularin in water by direct injection-ultra performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2017, 35(12):1286-1293 Oehrle S A, Southwell B, Westrick J. Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry[J]. Toxicon, 2010, 55(5):965-972 Kim M S, Kim H H, Lee K M, et al. Oxidation of microcystin-LR by ferrous-tetrapolyphosphate in the presence of oxygen and hydrogen peroxide[J]. Water Research, 2017, 114:277-285 Nummer S A, Weeden A J, Shaw C, et al. Updating the ELISA standard curve fitting process to reduce uncertainty in estimated microcystin concentrations[J]. MethodsX, 2018, 5:304-311 Heussner A H, Winter I, Altaner S, et al. Comparison of two ELISA-based methods for the detection of microcystins in blood serum[J]. Chemico-Biological Interactions, 2014, 223:10-17 He X X, Stanford B D, Adams C, et al. Varied influence of microcystin structural difference on ELISA cross-reactivity and chlorination efficiency of congener mixtures[J]. Water Research, 2017, 126:515-523 Metcalf J S, Codd G A. Analysis of cyanobacterial toxins by immunological methods[J]. Chemical Research in Toxicology, 2003, 16(2):103-112 吴丹青. 太湖水中微囊藻毒素的检测技术及其方法比对分析[D]. 杭州:浙江工业大学, 2017:10-13 Wu D Q. Detection methods of microcystins in water of Taihu Lake and their comparison analysis[D]. Hangzhou:Zhejiang University of Technology, 2017:10 -13(in Chinese)
Via-Ordorika L, Fastner J, Kurmayer R, et al. Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies:Detection of microcystins and microcystin genes in individual colonies[J]. Systematic and Applied Microbiology, 2004, 27(5):592-602 Otten T G, Xu H, Qin B, et al. Spatiotemporal patterns and ecophysiology of toxigenic microcystis blooms in Lake Taihu, China:Implications for water quality management[J]. Environmental Science & Technology, 2012, 46(6):3480-3488 Griffiths D J, Saker M L. The Palm Island mystery disease 20 years on:A review of research on the cyanotoxin cylindrospermopsin[J]. Environmental Toxicology, 2003, 18(2):78-93 Park H D, Iwami C, Watanabe M F, et al. Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991-1994)[J]. Environmental Toxicology, 1998, 13(1):61-72 Bormans M, Amzil Z, Mineaud E, et al. Demonstrated transfer of cyanobacteria and cyanotoxins along a freshwater-marine continuum in France[J]. Harmful Algae, 2019, 87:101639 Vareli K, Touka A, Theurillat X, et al. Microcystins in two low nutrient lakes in the Epirus region of north-west Greece[J]. CLEAN-Soil Air Water, 2015, 43(9):1267-1356 Wood S A, Maier M Y, Puddick J, et al. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand Lakes[J]. FEMS Microbiology Ecology, 2016, 93(2):fiw234 Dadheech P K, Selmeczy G B, Vasas G, et al. Presence of potential toxin-producing cyanobacteria in an oligo-mesotrophic lake in Baltic Lake District, Germany:An ecological, genetic and toxicological survey[J]. Toxins, 2014, 6(10):2912-2931 葛思敏. 重点湖泊微囊藻毒素时空分布特征及综合健康风险评估[D]. 北京:中国环境科学研究院, 2021:26-30 Ge S M. Spatiotemporal distribution characteristics of microcystins in key lakes and comprehensive health risk assessment[D]. Beijing:Chinese Research Academy of Environmental Sciences, 2021:26 -30(in Chinese)
Greer B, McNamee S E, Boots B, et al. A validated UPLC-MS/MS method for the surveillance of ten aquatic biotoxins in European brackish and freshwater systems[J]. Harmful Algae, 2016, 55:31-40 Farkas O, Gyémant G, Hajdú G, et al. Variability of microcystins and its synthetase gene cluster in Microcystis and Planktothrix waterblooms in shallow lakes of Hungary[J]. Acta Biologica Hungarica, 2014, 65(2):227-239 Cerasino L, Shams S, Boscaini A, et al. Multiannual trend of microcystin production in the toxic cyanobacterium Planktothrix rubescens in Lake Garda (Italy)[J]. Chemistry and Ecology, 2016, 32(5):492-506 Czyżewska W, Piontek M, Łuszczyńska K. The occurrence of potential harmful cyanobacteria and cyanotoxins in the Obrzyca River (Poland), a source of drinking water[J]. Toxins, 2020, 12(5):284 Oehrle S, Rodriguez-Matos M, Cartamil M, et al. Toxin composition of the 2016Microcystis aeruginosa bloom in the St. Lucie Estuary, Florida[J]. Toxicon, 2017, 138:169-172 Amé M V, Galanti L N, Menone M L, et al. Microcystin-LR, -RR, -YR and-LA in water samples and fishes from a shallow lake in Argentina[J]. Harmful Algae, 2010, 9(1):66-73 Mbukwa E A, Msagati T A M, Mamba B B. Quantitative variations of intracellular microcystin-LR, -RR and-YR in samples collected from four locations in Hartbeespoort Dam in North West Province (South Africa) during the 2010/2011 summer season[J]. International Journal of Environmental Research and Public Health, 2012, 9(10):3484-3505 Briand J F, Jacquet S, Flinois C, et al. Variations in the microcystin production of Planktothrix rubescens (cyanobacteria) assessed from a four-year survey of lac du Bourget (France) and from laboratory experiments[J]. Microbial Ecology, 2005, 50(3):418-428 Rohrlack T, Edvardsen B, Skulberg R, et al. Oligopeptide chemotypes of the toxic freshwater cyanobacterium Planktothrix can form sub-populations with dissimilar ecological traits[J]. Limnology and Oceanography, 2008, 53(4):1279-1293 Shishido T K, Jokela J, Humisto A, et al. The biosynthesis of rare homo-amino acid containing variants of microcystin by a benthic cyanobacterium[J]. Marine Drugs, 2019, 17(5):271 Christiansen G, Yoshida W Y, Blom J F, et al. Isolation and structure determination of two microcystins and sequence comparison of the McyABC adenylation domains in Planktothrix species[J]. Journal of Natural Products, 2008, 71(11):1881-1886 Fewer D P, Rouhiainen L, Jokela J, et al. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster[J]. BMC Evolutionary Biology, 2007, 7:183 Bjørg M, Gudrun B, Skulberg O M, et al. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains[J]. Journal of Bacteriology, 2003, 185(9):2774-2785 Puddick J, Prinsep M R, Wood S A, et al. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners[J]. Marine Drugs, 2014, 12(11):5372-5395 Tanabe Y, Kaya K, Watanabe M M. Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp.[J]. Journal of Molecular Evolution, 2004, 58(6):633-641 Tooming-Klunderud A, Mikalsen B, Kristensen T, et al. The mosaic structure of the mcyABC operon in Microcystis[J]. Microbiology, 2008, 154(Pt 7):1886-1899 Meyer S, Kehr J C, Mainz A, et al. Biochemical dissection of the natural diversification of microcystin provides lessons for synthetic biology of NRPS[J]. Cell Chemical Biology, 2016, 23(4):462-471 Nishizawa T, Asayama M, Fujii K, et al. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp.[J]. The Journal of Biochemistry, 1999, 126(3):520-529 Lürling M, van Oosterhout F, Faassen E. Eutrophication and warming boost cyanobacterial biomass and microcystins[J]. Toxins, 2017, 9(2):64 Pearson L A, Dittmann E, Mazmouz R, et al. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria[J]. Harmful Algae, 2016, 54:98-111 Peng G T, Lin S J, Fan Z Q, et al. Transcriptional and physiological responses to nutrient loading on toxin formation and photosynthesis in Microcystis aeruginosa FACHB-905[J]. Toxins, 2017, 9(5):168 Wang Z C, Zhang Y, Huang S, et al. Nitrogen limitation significantly reduces the competitive advantage of toxic Microcystis at high light conditions[J]. Chemosphere, 2019, 237:124508 殷燕, 张运林, 王明珠, 等. 光照强度对铜绿微囊藻(Microcystis aeruginosa)和斜生栅藻(Scenedesmus obliqnus)生长及吸收特性的影响[J]. 湖泊科学, 2012, 24(5):755-764 Yin Y, Zhang Y L, Wang M Z, et al. Effects of different irradiation intensity on the growth and absorption properties of Microcystis aeruginosa and Scenedesmus obliqnus[J]. Journal of Lake Sciences, 2012, 24(5):755-764(in Chinese)
孙昕, 何飞飞, 李鹏飞, 等. 光照周期性波动对铜绿微囊藻(Microcystis aeruginosa)和斜生栅藻(Scenedesmus obliquus)生长的抑制[J]. 湖泊科学, 2018, 30(5):1309-1318 Sun X, He F F, Li P F, et al. The growth inhibition of Microcystis aeruginosa and Scenedesmus obliquus by periodic light fluctuation[J]. Journal of Lake Sciences, 2018, 30(5):1309-1318(in Chinese)
Salvador D, Churro C, Valério E. Evaluating the influence of light intensity in mcyA gene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa[J]. Journal of Microbiological Methods, 2016, 123:4-12 Pineda-Mendoza R M, Zúñiga G, Martínez-Jerónimo F. Microcystin production in Microcystis aeruginosa:Effect of type of strain, environmental factors, nutrient concentrations, and N:P ratio on mcyA gene expression[J]. Aquatic Ecology, 2016, 50(1):103-119 Kaebernick M, Neilan B A, Börner T, et al. Light and the transcriptional response of the microcystin biosynthesis gene cluster[J]. Applied and Environmental Microbiology, 2000, 66(8):3387-3392 Kim H R, Kim C K, Ahn T S, et al. Effects of temperature and light on microcystin synthetase gene transcription in Microcystis aeruginosa[J]. Key Engineering Materials, 2005, 277-279:606-611 Tonk L, Visser P M, Christiansen G, et al. The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity[J]. Applied and Environmental Microbiology, 2005, 71(9):5177-5181 Tonk L, van de Waal D B, Slot P, et al. Amino acid availability determines the ratio of microcystin variants in the cyanobacterium Planktothrix agardhii[J]. FEMS Microbiology Ecology, 2008, 65(3):383-390 Xie L, Rediske R R, Hong Y, et al. The role of environmental parameters in the structure of phytoplankton assemblages and cyanobacteria toxins in two hypereutrophic lakes[J]. Hydrobiologia, 2012, 691(1):255-268 Li D M, Zheng H Y, Pan J L, et al. Seasonal dynamics of photosynthetic activity, Microcystis genotypes and microcystin production in Lake Taihu, China[J]. Journal of Great Lakes Research, 2017, 43(4):710-716 袁丽娟, 廖且根, 张莉, 等. 鄱阳湖微囊藻毒素时空分布格局及其与理化和生物因子的关系[J]. 环境科学, 2018, 39(1):450-459 Yuan L J, Liao Q G, Zhang L, et al. Seasonal and spatial variations of microcystins and their relationships with physiochemical and biological factors in Poyang Lake[J]. Environmental Science, 2018, 39(1):450-459(in Chinese)
Joung S H, Oh H M, Ko S R, et al. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea[J]. Harmful Algae, 2011, 10(2):188-193 吴溶, 崔莉凤, 卢珊, 等. 温度光照对铜绿微囊藻生长及藻毒素释放的影响[J]. 环境科学与技术, 2010, 33(S1):33-36 , 51 Wu R, Cui L F, Lu S, et al. The influence of temperature and illumination on the Microcystis production[J]. Environmental Science & Technology, 2010, 33(S1):33-36, 51(in Chinese)
Walls J T, Wyatt K H, Doll J C, et al. Hot and toxic:Temperature regulates microcystin release from cyanobacteria[J]. Science of the Total Environment, 2018, 610-611:786-795 Scherer P I, Raeder U, Geist J, et al. Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression in Microcystis aeruginosa[J]. MicrobiologyOpen, 2017, 6(1):e00393 Xie L Q, Rediske R R, Gillett N D, et al. The impact of environmental parameters on microcystin production in dialysis bag experiments[J]. Scientific Reports, 2016, 6:38722 Amé M V, Wunderlin D A. Effects of iron, ammonium and temperature on microcystin content by a natural concentrated Microcystis aeruginosa population[J]. Water, Air, and Soil Pollution, 2005, 168(1):235-248 Van der Westhuizen A, Eloff J. Effect of temperature and light (fluence rate) on the composition of the toxin of the cyanobacterium Microcystis aeruginosa (UV-006)[J]. Archiv Für Hydrobiologie, 1986, 108(2):145-154 Peng G T, Martin R M, Dearth S P, et al. Seasonally relevant cool temperatures interact with N chemistry to increase microcystins produced in lab cultures of Microcystis aeruginosa NIES-843[J]. Environmental Science & Technology, 2018, 52(7):4127-4136 Mowe M A D, Porojan C, Abbas F, et al. Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species[J]. Harmful Algae, 2015, 50:88-98 Xu Y, Wang G X, Yang W B, et al. Dynamics of the water bloom-forming Microcystis and its relationship with physicochemical factors in Lake Xuanwu (China)[J]. Environmental Science and Pollution Research, 2010, 17(9):1581-1590 Oh H M, Lee S J, Jang M H, et al. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat[J]. Applied and Environmental Microbiology, 2000, 66(1):176-179 史红星, 王庚, 王晨宇, 等. 微囊藻毒素产生过程中磷素行为与作用研究[J]. 环境科学, 2011, 32(10):2916-2919 Shi H X, Wang G, Wang C Y, et al. Effect ofphosphorus on the production of microcystin[J]. Environmental Science, 2011, 32(10):2916-2919(in Chinese)
Harke M J, Berry D L, Ammerman J W, et al. Molecular response of the bloom-forming cyanobacterium, Microcystis aeruginosa, to phosphorus limitation[J]. Microbial Ecology, 2012, 63(1):188-198 Ludwig M, Bryant D A. Acclimation of the global transcriptome of the cyanobacterium[QX(Y12#] Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources[J]. Frontiers in Microbiology, 2012, 3:145 Vézie C, Rapala J, Vaitomaa J, et al. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations[J]. Microbial Ecology, 2002, 43(4):443-454 付保荣, 鲁男, 苗斌, 等. 环境因子对铜绿微囊藻生长和产毒的影响[J]. 辽宁大学学报:自然科学版, 2015, 42(1):85-90 Fu B R, Lu N, Miao B, et al. Effects of environmental factors on growth and toxin production of Microcystis aeraginosa[J]. Journal of Liaoning University:Natural Sciences Edition, 2015, 42(1):85-90(in Chinese)
Davis T W, Bullerjahn G S, Tuttle T, et al. Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during Planktothrix blooms in Sandusky Bay, Lake Erie[J]. Environmental Science & Technology, 2015, 49(12):7197-7207 Harke M J, Gobler C J. Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa[J]. BMC Genomics, 2015, 16:1068 Zhou Y P, Zhang X F, Li X, et al. Evaluation of changes in Microcystis aeruginosa growth and microcystin production by urea via transcriptomic surveys[J]. Science of the Total Environment, 2019, 655:181-187 Tang X M, Krausfeldt L E, Shao K Q, et al. Seasonal gene expression and the ecophysiological implications of toxic Microcystis aeruginosa blooms in Lake Taihu[J]. Environmental Science & Technology, 2018, 52(19):11049-11059 Zhou Y P, Li X, Xia Q Q, et al. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation[J]. Science of the Total Environment, 2020, 700:134501 Neilan B A, Pearson L A, Muenchhoff J, et al. Environmental conditions that influence toxin biosynthesis in cyanobacteria[J]. Environmental Microbiology, 2013, 15(5):1239-1253 Zilliges Y, Kehr J C, Meissner S, et al. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of microcystis under oxidative stress conditions[J]. PLoS One, 2011, 6(3):e17615 Kuniyoshi T M, Gonzalez A, Lopez-Gomollon S, et al. 2-oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster[J]. FEBS Letters, 2011, 585(24):3921-3926 Qian Z Y, Chen X, Zhu H T, et al. Study on the cyanobacterial toxin metabolism of Microcystis aeruginosa in nitrogen-starved conditions by a stable isotope labelling method[J]. Journal of Hazardous Materials, 2019, 373:558-564 van de Waal D B, Ferreruela G, Tonk L, et al. Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii[J]. FEMS Microbiology Ecology, 2010, 74(2):430-438 Puddick J, Prinsep M R, Wood S A, et al. Modulation of microcystin congener abundance following nitrogen depletion of a Microcystis batch culture[J]. Aquatic Ecology, 2016, 50(2):235-246 王举, 李婧, 陈荣, 等. 锌在不同磷源条件下对铜绿微囊藻生长与产毒的影响[J]. 生态毒理学报, 2018, 13(5):226-234 Wang J, Li J, Chen R, et al. Effect of zinc on growth and toxin production of Microcystis aeruginosa under different phosphorus sources[J]. Asian Journal of Ecotoxicology, 2018, 13(5):226-234(in Chinese)
Sevilla E, Martin-Luna B, Vela L, et al. Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806[J]. Environmental Microbiology, 2008, 10(10):2476-2483 Pereira D A, Pimentel J, Bird D F, et al. Changes in oligopeptide production by toxic cyanobacterial strains under iron deficiency[J]. Aquatic Microbial Ecology, 2015, 74(3):205-214 Alexova R, Fujii M, Birch D, et al. Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation[J]. Environmental Microbiology, 2011, 13(4):1064-1077 Lukač M, Aegerter R. Influence of trace metals on growth and toxin production of Microcystis aeruginosa[J]. Toxicon, 1993, 31(3):293-305 Sandrini G, Huisman J, Matthijs H C P. Potassium sensitivity differs among strains of the harmful cyanobacterium Microcystis and correlates with the presence of salt tolerance genes[J]. FEMS Microbiology Letters, 2015, 362(16):fnv121 -

计量
- 文章访问数: 3283
- HTML全文浏览数: 3283
- PDF下载数: 142
- 施引文献: 0