内分泌干扰物对鱼类跨世代毒性效应及机制的研究进展

赵飞, 杨艳羽, 汝少国, 陈栋, 施雪卿, 魏朋浩. 内分泌干扰物对鱼类跨世代毒性效应及机制的研究进展[J]. 生态毒理学报, 2022, 17(4): 1-16. doi: 10.7524/AJE.1673-5897.20211214004
引用本文: 赵飞, 杨艳羽, 汝少国, 陈栋, 施雪卿, 魏朋浩. 内分泌干扰物对鱼类跨世代毒性效应及机制的研究进展[J]. 生态毒理学报, 2022, 17(4): 1-16. doi: 10.7524/AJE.1673-5897.20211214004
Zhao Fei, Yang Yanyu, Ru Shaoguo, Chen Dong, Shi Xueqing, Wei Penghao. Transgenerational Toxicity Induced by Endocrine Disrupting Chemicals on Fish and Underlying Mechanisms[J]. Asian journal of ecotoxicology, 2022, 17(4): 1-16. doi: 10.7524/AJE.1673-5897.20211214004
Citation: Zhao Fei, Yang Yanyu, Ru Shaoguo, Chen Dong, Shi Xueqing, Wei Penghao. Transgenerational Toxicity Induced by Endocrine Disrupting Chemicals on Fish and Underlying Mechanisms[J]. Asian journal of ecotoxicology, 2022, 17(4): 1-16. doi: 10.7524/AJE.1673-5897.20211214004

内分泌干扰物对鱼类跨世代毒性效应及机制的研究进展

    作者简介: 赵飞(1988—),女,博士,副教授,研究方向为新污染物的毒性分析,E-mail:zhaofei@qut.edu.cn
    通讯作者: 魏朋浩, E-mail: weipenghao2010@163.com
  • 基金项目:

    国家自然科学基金青年基金项目(21906089,22006094);国家重点研发计划(2021YFC3201004)

  • 中图分类号: X171.5

Transgenerational Toxicity Induced by Endocrine Disrupting Chemicals on Fish and Underlying Mechanisms

    Corresponding author: Wei Penghao, weipenghao2010@163.com
  • Fund Project:
  • 摘要: 目前的研究对于内分泌干扰物(endocrine disrupting chemicals,EDCs)暴露人类和野生动物所引起的毒性危害已有较为深入的科学认识。然而,近年来的研究发现,EDCs引起的亲代生理功能异常会传递给子代,即产生跨世代毒性效应,即使子代没有直接受到暴露,但其存活、生长、发育、生理、内分泌系统和行为等功能仍然也会受到严重影响。不同于已有的许多综述主要总结了EDCs对亲本产生的毒性危害,本文针对鱼类这一重要的生态毒理学研究模型,全面归纳了EDCs分别经母本、父本和双亲引起跨世代毒性效应的最新研究进展,并从EDCs的跨世代传递、内分泌激素和其他生理因子的跨世代传递以及表观遗传修饰的跨世代继承这3个方面,综述了EDCs对鱼类产生跨世代毒性效应的作用机制,以期为全面认识EDCs的生态风险提供参考。
  • 加载中
  • Bergman Å, Heindel J, Jobling S, et al. State-of-the-science of endocrine disrupting chemicals, 2012[J]. Toxicology Letters, 2012, 211:S3
    Koch C A, Diamanti-Kandarakis E. Introduction to endocrine disrupting chemicals-Is it time to act?[J]. Reviews in Endocrine and Metabolic Disorders, 2015, 16(4):269-270
    Annamalai J, Namasivayam V. Endocrine disrupting chemicals in the atmosphere:Their effects on humans and wildlife[J]. Environment International, 2015, 76:78-97
    Sun Y, Huang H, Sun Y, et al. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent[J]. Frontiers of Environmental Science & Engineering, 2014, 8(1):18-26
    Futran Fuhrman V, Tal A, Arnon S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond[J]. Journal of Hazardous Materials, 2015, 286:589-611
    Wu S M, Su C K, Shu L H. Effects of calcium and estrogen on the development of the ceratohyal cartilage in zebrafish (Danio rerio) larvae upon embryo and maternal cadmium exposure[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 213:47-54
    Wang Y C, Shen C, Wang C G, et al. Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish (Danio rerio), and the mechanisms involved[J]. Chemosphere, 2018, 191:7-16
    Westerlund L, Billsson K, Andersson P. Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen[J]. Environmental Toxicology and Chemistry, 2000, 19(6):1582-1588
    Wei P H, Zhao F, Zhang X N, et al. Transgenerational thyroid endocrine disruption induced by bisphenol S affects the early development of zebrafish offspring[J]. Environmental Pollution, 2018, 243:800-808
    Schwindt A R. Parental effects of endocrine disrupting compounds in aquatic wildlife:Is there evidence of transgenerational inheritance?[J]. General and Comparative Endocrinology, 2015, 219:152-164
    Skinner M K, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of endocrine disruptors[J]. Reproductive Toxicology, 2011, 31(3):337-343
    Ke X, Gui S F, Huang H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere, 2017, 175:473-481
    Hassani G, Babaei A A, Takdastan A, et al. Occurrence and fate of 17β-estradiol in water resources and wastewater in Ahvaz, Iran[J]. Global Nest Journal, 2016, 18(4):855-866
    陈茹. 珠江河口水体和沉积物中壬基酚和辛基酚的分布特征及风险评价[D]. 广州:暨南大学, 2014:28 Chen R. Distribution characteristics and risk assessment of nonylphenol and octylphenol in water and sediments from riverine runoff of the Pearl River Delta[D]. Guangzhou:Jinan University, 2014:28(in Chinese)
    Rasmussen T H, Andreassen T K, Pedersen S N, et al. Effects of waterborne exposure of octylphenol and oestrogen on pregnant viviparous eelpout (Zoarces viviparus) and her embryos in ovario[J]. The Journal of Experimental Biology, 2002, 205(Pt 24):3857-3876
    Kang J H, Asai D, Katayama Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms[J]. Critical Reviews in Toxicology, 2007, 37(7):607-625
    邵阳, 杨国胜, 刘韦华, 等. 北京地区地表水中OCPs和PCBs的污染分析[J]. 中国环境科学, 2016, 36(9):2606-2613

    Shao Y, Yang G S, Liu W H, et al. The study of organochlorine pesticides and polychlorinated biphenyls in surface water around Beijing[J]. China Environmental Science, 2016, 36(9):2606-2613(in Chinese)

    罗冬莲. 福建漳江口水环境中滴滴涕(DDTs)的分布与溯源[J]. 应用生态学报, 2014, 25(12):3664-3672

    Luo D L. Distribution characteristics and source apportionment of dichloro-diphenyl-tricgloroethanes in Zhangjiang River Estuary of Fujian, China[J]. Chinese Journal of Applied Ecology, 2014, 25(12):3664-3672(in Chinese)

    Metcalfe T L, Metcalfe C D, Kiparissis Y, et al. Gonadal development and endocrine responses in Japanese medaka (Oryzias latipes) exposed to o,p'-DDT in water or through maternal transfer[J]. Environmental Toxicology and Chemistry, 2000, 19(7):1893
    Fan X T, Wu L, Hou T T, et al. Maternal bisphenol A exposure impaired endochondral ossification in craniofacial cartilage of rare minnow (Gobiocypris rarus) offspring[J]. Ecotoxicology and Environmental Safety, 2018, 163:514-520
    Brustein E, Saint-Amant L, Buss R R, et al. Steps during the development of the zebrafish locomotor network[J]. Journal of Physiology-Paris, 2003, 97(1):77-86
    Chen L G, Wang X F, Zhang X H, et al. Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead[J]. Environmental Pollution, 2017, 230:96-106
    Schultz I R, Skillman A, Nicolas J M, et al. Short-term exposure to 17 alpha-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss)[J]. Environmental Toxicology and Chemistry, 2003, 22(6):1272-1280
    Brown K H, Schultz I R, Nagler J J. Reduced embryonic survival in rainbow trout resulting from paternal exposure to the environmental estrogen 17alpha-ethynylestradiol during late sexual maturation[J]. Reproduction, 2007, 134(5):659-666
    Brown K H, Schultz I R, Cloud J G, et al. Aneuploid sperm formation in rainbow trout exposed to the environmental estrogen 17{alpha}-ethynylestradiol[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50):19786-19791
    Nash J P, Kime D E, Van der Ven L T M, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish[J]. Environmental Health Perspectives, 2004, 112(17):1725-1733
    Valcarce D G, Vuelta E, Robles V, et al. Paternal exposure to environmental 17-alpha-ethinylestradiol concentrations modifies testicular transcription, affecting the sperm transcript content and the offspring performance in zebrafish[J]. Aquatic Toxicology, 2017, 193:18-29
    Lombó M, Fernández-Díez C, González-Rojo S, et al. Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure[J]. Environmental Pollution, 2015, 206:667-678
    Dong X, Zhang Z, Meng S L, et al. Parental exposure to bisphenol A and its analogs influences zebrafish offspring immunity[J]. Science of the Total Environment, 2018, 610-611:291-297
    Chen L G, Hu C Y, Guo Y Y, et al. TiO2 nanoparticles and BPA are combined to impair the development of offspring zebrafish after parental coexposure[J]. Chemosphere, 2019, 217:732-741
    Soares J, Coimbra A M, Reis-Henriques M A, et al. Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol[J]. Aquatic Toxicology, 2009, 95(4):330-338
    Schwindt A R, Winkelman D L, Keteles K, et al. An environmental oestrogen disrupts fish population dynamics through direct and transgenerational effects on survival and fecundity[J]. Journal of Applied Ecology, 2014, 51(3):582-591
    Zillioux E J, Johnson I C, Kiparissis Y, et al. The sheepshead minnow as an in vivo model for endocrine disruption in marine teleosts:A partial life-cycle test with 17alpha-ethynylestradiol[J]. Environmental Toxicology and Chemistry, 2001, 20(9):1968-1978
    Hani Y M I, Turies C, Palluel O, et al. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus):Interest of digestive enzymes as biomarkers[J]. Aquatic Toxicology, 2018, 199:252-262
    Kang I, Yokota H, Oshima Y, et al. Effects of 4-nonylphenol on reproduction of Japanese medaka, Oryzias latipes[J]. Environmental Toxicology and Chemistry:An International Journal, 2003, 22(10):2438-2445
    Yang F X, Xu Y, Hui Y. Reproductive effects of prenatal exposure to nonylphenol on zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 142(1-2):77-84
    Hill R L Jr, Janz D M. Developmental estrogenic exposure in zebrafish (Danio rerio):Ⅰ. Effects on sex ratio and breeding success[J]. Aquatic Toxicology, 2003, 63(4):417-429
    Holdway D A, Hefferman J, Smith A. Multigeneration assessment of nonylphenol and endosulfan using a model Australian freshwater fish, Melanotaenia fluviatilis[J]. Environmental Toxicology, 2008, 23(2):253-262
    Wang Y, Wang L, Chang W G, et al. Neurotoxic effects of perfluoroalkyl acids:Neurobehavioral deficit and its molecular mechanism[J]. Toxicology Letters, 2019, 305:65-72
    Jin Y H, Liu W, Sato I, et al. PFOS and PFOA in environmental and tap water in China[J]. Chemosphere, 2009, 77(5):605-611
    Wu J P, Luo X J, Zhang Y, et al. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China[J]. Environment International, 2008, 34(8):1109-1113
    Yu L Q, Lam J C W, Guo Y Y, et al. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish[J]. Environmental Science & Technology, 2011, 45(24):10652-10659
    Zhao X S, Ren X, Ren B X, et al. Life-cycle exposure to BDE-47 results in thyroid endocrine disruption to adults and offsprings of zebrafish (Danio rerio)[J]. Environmental Toxicology and Pharmacology, 2016, 48:157-167
    Han Z H, Li Y F, Zhang S H, et al. Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring[J]. Aquatic Toxicology, 2017, 190:46-52
    Guo Y Y, Chen L G, Wu J, et al. Parental co-exposure to bisphenol A and nano-TiO2 causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring[J]. Science of the Total Environment, 2019, 650:557-565
    Inagaki T, Smith N L, Sherva K M, et al. Cross-generational effects of parental low dose BPA exposure on the Gonadotropin-Releasing Hormone3 system and larval behavior in medaka (Oryzias latipes)[J]. Neurotoxicology, 2016, 57:163-173
    Chen L G, Yu K, Huang C J, et al. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae[J]. Environmental Science & Technology, 2012, 46(17):9727-9734
    He J H, Yang D R, Wang C Y, et al. Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring[J]. Ecotoxicology, 2011, 20(8):1813-1822
    Chen J F, Das S R, Du J L, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring[J]. Environmental Toxicology and Chemistry, 2013, 32(1):201-206
    Risch M R, Gay D A, Fowler K K, et al. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002-2008[J]. Environmental Pollution, 2012, 161:261-271
    何天容, 吴玉勇, 冯新斌. 富营养化对贵州红枫湖水库汞形态和分布特征的影响[J]. 湖泊科学, 2010, 22(2):208-214

    He T R, Wu Y Y, Feng X B. The impact of eutrophication on distribution and speciation of mercury in Hongfeng Reservoir, Guizhou Province[J]. Journal of Lake Sciences, 2010, 22(2):208-214(in Chinese)

    Mora-Zamorano F X, Klingler R, Murphy C A, et al. Parental whole life cycle exposure to dietary methylmercury in zebrafish (Danio rerio) affects the behavior of offspring[J]. Environmental Science & Technology, 2016, 50(9):4808-4816
    Alvarez M D C, Murphy C A, Rose K A, et al. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus)[J]. Aquatic Toxicology, 2006, 80(4):329-337
    Volkova K, Reyhanian Caspillo N, Porseryd T, et al. Developmental exposure of zebrafish (Danio rerio) to 17α-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny[J]. Hormones and Behavior, 2015, 73:30-38
    Volkova K, Reyhanian Caspillo N, Porseryd T, et al. Transgenerational effects of 17α-ethinyl estradiol on anxiety behavior in the guppy, Poecilia reticulata[J]. General and Comparative Endocrinology, 2015, 223:66-72
    Seki M, Yokota H, Maeda M, et al. Fish full life-cycle testing for 17β-estradiol on medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2005, 24(5):1259-1266
    Raimondo S, Hemmer B L, Goodman L R, et al. Multigenerational exposure of the estuarine sheepshead minnow (Cyprinodon variegatus) to 17β-estradiol. Ⅱ. Population-level effects through two life cycles[J]. Environmental Toxicology and Chemistry, 2009, 28(11):2409-2415
    Schäfers C, Teigeler M, Wenzel A, et al. Concentration- and time-dependent effects of the synthetic estrogen, 17alpha-ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio[J]. Journal of Toxicology and Environmental Health Part A, 2007, 70(9):768-779
    Yokota H, Seki M, Maeda M, et al. Life-cycle toxicity of 4-nonylphenol to medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2001, 20(11):2552
    Matta M B, Linse J, Cairncross C, et al. Reproductive and transgenerational effects of methylmercury or aroclor 1268 on Fundulus heteroclitus[J]. Environmental Toxicology and Chemistry, 2001, 20(2):327-335
    Chen J F, Xiao Y Y, Gai Z X, et al. Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay:Evidence of male-specific effects[J]. Aquatic Toxicology, 2015, 169:204-214
    Wang M Y, Chen J F, Lin K F, et al. Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring[J]. Environmental Toxicology and Chemistry, 2011, 30(9):2073-2080
    Shi G H, Wang J X, Guo H, et al. Parental exposure to 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) induced transgenerational thyroid hormone disruption in zebrafish[J]. Science of the Total Environment, 2019, 665:855-863
    Xu C, Niu L L, Liu J S, et al. Maternal exposure to fipronil results in sulfone metabolite enrichment and transgenerational toxicity in zebrafish offspring:Indication for an overlooked risk in maternal transfer?[J]. Environmental Pollution, 2019, 246:876-884
    Cheng H C, Yan W, Wu Q, et al. Parental exposure to microcystin-LR induced thyroid endocrine disruption in zebrafish offspring, a transgenerational toxicity[J]. Environmental Pollution, 2017, 230:981-988
    Zhang Y K, Su G Y, Li M, et al. Chemical and biological transfer:Which one is responsible for the maternal transfer toxicity of tris(1,3-dichloro-2-propyl) phosphate in zebrafish?[J]. Environmental Pollution, 2018, 243:1376-1382
    Power D M, Llewellyn L, Faustino M, et al. Thyroid hormones in growth and development of fish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2001, 130(4):447-459
    Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish[J]. General and Comparative Endocrinology, 2017, 245:55-68
    Sopinka N M, Capelle P M, Semeniuk C A D, et al. Glucocorticoids in fish eggs:Variation, interactions with the environment, and the potential to shape offspring fitness[J]. Physiological and Biochemical Zoology:PBZ, 2017, 90(1):15-33
    Bird A. DNA methylation patterns and epigenetic memory[J]. Genes & Development, 2002, 16(1):6-21
    Youngson N A, Whitelaw E. Transgenerational epigenetic effects[J]. Annual Review of Genomics and Human Genetics, 2008, 9:233-257
    Head J A. Patterns of DNA methylation in animals:An ecotoxicological perspective[J]. Integrative and Comparative Biology, 2014, 54(1):77-86
    Cavalieri V, Spinelli G. Environmental epigenetics in zebrafish[J]. Epigenetics & Chromatin, 2017, 10(1):46
    Kamstra J H, Sales L B, Aleström P, et al. Differential DNA methylation at conserved non-genic elements and evidence for transgenerational inheritance following developmental exposure to mono(2-ethylhexyl) phthalate and 5-azacytidine in zebrafish[J]. Epigenetics & Chromatin, 2017, 10:20
    Carvan M J Ⅲ, Kalluvila T A, Klingler R H, et al. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish[J]. PLoS One, 2017, 12(5):e0176155
  • 加载中
计量
  • 文章访问数:  2621
  • HTML全文浏览数:  2621
  • PDF下载数:  265
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-14
赵飞, 杨艳羽, 汝少国, 陈栋, 施雪卿, 魏朋浩. 内分泌干扰物对鱼类跨世代毒性效应及机制的研究进展[J]. 生态毒理学报, 2022, 17(4): 1-16. doi: 10.7524/AJE.1673-5897.20211214004
引用本文: 赵飞, 杨艳羽, 汝少国, 陈栋, 施雪卿, 魏朋浩. 内分泌干扰物对鱼类跨世代毒性效应及机制的研究进展[J]. 生态毒理学报, 2022, 17(4): 1-16. doi: 10.7524/AJE.1673-5897.20211214004
Zhao Fei, Yang Yanyu, Ru Shaoguo, Chen Dong, Shi Xueqing, Wei Penghao. Transgenerational Toxicity Induced by Endocrine Disrupting Chemicals on Fish and Underlying Mechanisms[J]. Asian journal of ecotoxicology, 2022, 17(4): 1-16. doi: 10.7524/AJE.1673-5897.20211214004
Citation: Zhao Fei, Yang Yanyu, Ru Shaoguo, Chen Dong, Shi Xueqing, Wei Penghao. Transgenerational Toxicity Induced by Endocrine Disrupting Chemicals on Fish and Underlying Mechanisms[J]. Asian journal of ecotoxicology, 2022, 17(4): 1-16. doi: 10.7524/AJE.1673-5897.20211214004

内分泌干扰物对鱼类跨世代毒性效应及机制的研究进展

    通讯作者: 魏朋浩, E-mail: weipenghao2010@163.com
    作者简介: 赵飞(1988—),女,博士,副教授,研究方向为新污染物的毒性分析,E-mail:zhaofei@qut.edu.cn
  • 1. 青岛理工大学环境与市政工程学院, 青岛 266033;
  • 2. 中国海洋大学海洋生命学院, 青岛 266003
基金项目:

国家自然科学基金青年基金项目(21906089,22006094);国家重点研发计划(2021YFC3201004)

摘要: 目前的研究对于内分泌干扰物(endocrine disrupting chemicals,EDCs)暴露人类和野生动物所引起的毒性危害已有较为深入的科学认识。然而,近年来的研究发现,EDCs引起的亲代生理功能异常会传递给子代,即产生跨世代毒性效应,即使子代没有直接受到暴露,但其存活、生长、发育、生理、内分泌系统和行为等功能仍然也会受到严重影响。不同于已有的许多综述主要总结了EDCs对亲本产生的毒性危害,本文针对鱼类这一重要的生态毒理学研究模型,全面归纳了EDCs分别经母本、父本和双亲引起跨世代毒性效应的最新研究进展,并从EDCs的跨世代传递、内分泌激素和其他生理因子的跨世代传递以及表观遗传修饰的跨世代继承这3个方面,综述了EDCs对鱼类产生跨世代毒性效应的作用机制,以期为全面认识EDCs的生态风险提供参考。

English Abstract

参考文献 (75)

返回顶部

目录

/

返回文章
返回