Ca2+添加对微生物矿化固结Cd2+的影响

王晖, 王敏, 汤鼎, 赵峰华, 郦嘉颖, 朱新园, 赵兴青. Ca2+添加对微生物矿化固结Cd2+的影响[J]. 环境化学, 2021, (3): 859-867. doi: 10.7524/j.issn.0254-6108.2019101002
引用本文: 王晖, 王敏, 汤鼎, 赵峰华, 郦嘉颖, 朱新园, 赵兴青. Ca2+添加对微生物矿化固结Cd2+的影响[J]. 环境化学, 2021, (3): 859-867. doi: 10.7524/j.issn.0254-6108.2019101002
WANG Hui, WANG Min, TANG Ding, ZHAO Fenghua, LI Jiaying, ZHU Xinyuan, ZHAO Xingqing. Effect of Ca2+ addition on microbial mineralization and consolidation of Cd2+[J]. Environmental Chemistry, 2021, (3): 859-867. doi: 10.7524/j.issn.0254-6108.2019101002
Citation: WANG Hui, WANG Min, TANG Ding, ZHAO Fenghua, LI Jiaying, ZHU Xinyuan, ZHAO Xingqing. Effect of Ca2+ addition on microbial mineralization and consolidation of Cd2+[J]. Environmental Chemistry, 2021, (3): 859-867. doi: 10.7524/j.issn.0254-6108.2019101002

Ca2+添加对微生物矿化固结Cd2+的影响

    通讯作者: 赵兴青, E-mail: zhaoxq@cczu.edu.cn
  • 基金项目:

    国家自然科学基金(41302025,41541016)资助.

Effect of Ca2+ addition on microbial mineralization and consolidation of Cd2+

    Corresponding author: ZHAO Xingqing, zhaoxq@cczu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41302025,41541016).
  • 摘要: 微生物诱导碳酸盐沉淀(MICP)可将游离的重金属离子转化为稳定的矿化物,在修复土壤重金属污染方面具有广阔的应用前景.本研究从铜陵矿区周边土壤中筛选得到1株产脲酶且耐镉矿化菌株CZW-1,16S rDNA鉴定为芽孢杆菌(Bacillus sp.),并将其利用于添加外源Ca2+的矿化固结Cd2+实验中.通过扫描电镜(SEM)、傅立叶红外光谱(FT-IR)以及X射线衍射(XRD)对矿化产物进行表征和分析.结果表明,添加一定浓度的Ca2+可促进细菌的生长,其最佳浓度为20 mmol·L-1.且Ca2+的添加可提高细菌的最小抑制浓度和促进脲酶活性,提高对Cd2+的矿化率,加钙前后的矿化率由68.93%提高到75.95%.通过对矿化物的定性分析,可知加钙前后的矿物沉淀由单一CdCO3变为CdCO3和CaCO3的复合沉淀,其表面也由严密紧实变成填满了小颗粒CdCO3的多孔状.
  • 加载中
  • [1] 梁雅雅,易筱筠,党志,等. 某铅锌尾矿库周边农田土壤重金属污染状况及风险评价[J]. 农业环境科学学报,2019,38(1):103-110.

    LIANG Y Y, YI X Y, DANG Z, et al. Pollution status and risk assessment of heavy metals in farmland soils around a lead-zinc tailings reservoir[J]. Journal of Agro-Environment Science, 2019, 38(10):103-110(in Chinese).

    [2] 吕达. 铜陵市冬瓜山铜矿区土壤重金属污染现状与评价[J]. 湖北理工学院学报,2019,35(1):18-22.

    LV D. Status and evaluation of soil heavy metal pollution in Dongguashan copper mining area of Tongling City[J]. Journal of Hubei Institute of Technology, 2019, 35(1):18-22(in Chinese).

    [3] 李如忠,潘成荣,徐晶晶,等. 典型有色金属矿业城市零星菜地蔬菜重金属污染及健康风险评估[J]. 环境科学,2013,34(3):262-271.

    LI R Z, PAN C R, XU J J, et al. Heavy metal pollution and health risk assessment of sporadic vegetable fields in typical non-ferrous metal mining cities[J]. Environmental Science, 2013, 34(3):262-271(in Chinese).

    [4] 方琳娜,陈印军,杨俊彦. 湖南省重金属镉污染农田状况及其防治措施[C]. 中国农业资源与区划学会学术年会论文集,2014:124-129. FANG L N, CHEN Y J, YANG J Y. Status of heavy metal cadmium contaminated farmland in Hunan province and its control measures[C]. Proceedings of the Academic Annual Meeting of the Chinese Society of Agricultural Resources and Regional Planning, 2014:124

    -129(in Chinese).

    [5] 董霞,李虹呈,陈齐,等. 石灰、硅钙镁改良剂对不同土壤-水稻系统Cd吸收累积的影响[J]. 环境化学,2019,38(6):1298-1306.

    DONG X, LI H C, CHEN Q, et al. Effects of lime, silicon, calcium and magnesium modifiers on Cd absorption and accumulation in different soil-rice systems[J]. Environmental Chemistry, 2019, 38(6):1298-1306(in Chinese).

    [6] 赵越,姚俊,王天齐. 碳酸盐矿化菌的筛选与其吸附和矿化Cd2+的特性[J]. 中国环境科学,2016,36(12):3800-3806.

    ZHAO Y, YAO J, WANG T Q, et al. Screening of carbonate mineralizing bacteria and their adsorption and mineralization characteristics of Cd2+[J]. China Environmental Science, 2016, 36(12):3800-3806(in Chinese).

    [7] 佘文杰. 四川某地Cd污染土壤的修复[D].绵阳:西南科技大学,2017. SHE W J. Remediation of Cd-contaminated soil somewhere in Sichuan[D]. Mianyang:Southwest University of Science and Technology, 2017(in Chinese).
    [8] KANG C H, KWON Y J, JAE-SEONG S. Bioremediation of heavy metals by using bacterial mixtures[J]. Ecological Engineering, 2016, 89(17):64-69.
    [9] LI M, CHENG X H, GUO H X. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J]. International Biodeterioration and Biodegradation, 2013, 76(1):81-85.
    [10] ZHU X J, LI W, ZHAN L, et al. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil[J]. Environmental Pollution, 2016, 219:149-155.
    [11] 成艳,赵兴青. 碳酸盐矿化菌固结Pb2+的生物矿化[J]. 环境科学研究,2016,29(10):1513-1520.

    CHENG Y, ZHAO X Q. Biomineralization of Pb2+ consolidated by carbonate mineralizing bacteria[J]. Environmental Science Research, 2016, 29(10):1513-1520(in Chinese).

    [12] ACHAL V, PAN X, ZHANG D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation[J]. Ecological Engineering, 2011, 37(10):1601-1605.
    [13] ACHAL V, PAN X, FU Q, et al. Biomineralization based remediation of As(Ⅲ) contaminated soil by Sporosarcina ginsengisoli[J]. Journal of Hazardous Materials, 2012, 201(1):178-184.
    [14] ANNU A, GARG A, Urmila. Level of Cd in different types of soil of Rohtak district and its bioremediation[J]. Journal of Environmental Chemical Engineering, 2016, 4(4):3797-3802.
    [15] FUJITA Y, TAYLOR J L, WENDT L M, et al. Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment[J]. Environmental Science and Technology, 2010, 44(19):7652-7658.
    [16] 李海波,魏海龙,胡传久,等. 外源钙对香菇富集重金属的抑制作用[J]. 中国林副特产,2013(6):1-4. LI H B, WEI H L, HU C J, et al. Inhibition of exogenous calcium on heavy metals enriched by shiitake mushrooms[J]. China Forestry Deputy Specialty, 2013

    (6):1-4(in Chinese).

    [17] AMOOZEGAR M A, GHAZANFARI N, DIDARI M. Lead and cadmium bioremoval by Halomonas sp. an exopolysaccharide-producing halophilic bacterium[J]. Progress in Biological Sciences, 2012, 2(1):1-11.
    [18] TANG Y Q, JI P, LAI G L, et al. Diverse microbial community from the coalbeds of the Ordos Basin, China[J]. International Journal of Coal Geology, 2012, 90/91(1):21-33.
    [19] 李哲,张欢,张秀芳,等. 一株碳酸盐矿化菌的分离鉴定及其对Cu的固定作用[J]. 环境科学学报,2017,37(10):3687-3695.

    LI Z, ZHANG H, ZHANG X F, et al. Isolation and identification of a carbonate mineralizing strain and its effect on Cu fixation[J]. Journal of Environmental Sciences, 2017, 37(10):3687-3695(in Chinese).

    [20] HARKES M P, PAASSEN L A V, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2):112-117.
    [21] 孙潇昊,缪林昌,童天志,等. 微生物诱导碳酸镁沉淀试验研究[J]. 岩土工程学报,2018,40(7):1309-1315.

    SUN X H, MIAO L C, TONG T Z, et al. Experimental research on microbial induced precipitation of magnesium carbonate[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7):1309-1315(in Chinese).

    [22] 王家, 赵阳阳, 代潭, 等. Cu、Cd污染对土壤脲酶活性的影响研究[J]. 环境科学与管理,2014,39(11):49-52.

    WANG J, ZHAO Y Y, DAI T, et al. Effect of Cu and Cd pollution on soil urease activity[J]. Environmental Science and Management, 2014, 39(11):49-52(in Chinese).

    [23] ZHENG X Y, SHEN Y H, WANG X Y, et al. Effect of pH on uranium(Ⅵ) biosorption and biomineralization by saccharomyces cerevisiae[J]. Chemosphere, 2018, 203:109-116.
    [24] 杨丽,燕传明,贺卓,等. 重金属耐性芽孢杆菌的筛选及其对辣椒吸收镉铅的阻控效应[J]. 农业环境科学学报,2018,37(6):1086-1093.

    YANG L, YAN C M, HE Z, et al. Screening of heavy metal-tolerant Bacillus and its resistance to cadmium and lead in pepper[J]. Journal of Agricultural Environmental Science, 2018, 37(6):1086-1093(in Chinese).

    [25] 罗媛. 菹草根/叶对钙的吸收/释放机制研究[D]. 武汉:华中农业大学,2013. LUO Y. Study on the absorption/release mechanism of calcium in alfalfa roots/leaves[D]. Wuhan:Huazhong Agricultural University, 2013(in Chinese).
    [26] 王新花,赵晨曦,潘响亮. 基于微生物诱导碳酸钙沉淀(MICP)的铅污染生物修复[J]. 地球与环境,2015,43(1):80-85.

    WNAG X H, ZHAO C X, PAN X L. Lead-based bioremediation based on microbially induced calcium carbonate precipitation (MICP)[J]. Earth and Environment, 2015, 43(1):80-85(in Chinese).

    [27] 张静,余顺慧,祁俊生,等. 钙和钾对延胡索幼苗镉毒害的缓解作用[J]. 草业学报,2017,26(8):123-130.

    ZHANG J, YU S H, QI J S, et al. Calcium and potassium alleviation of cadmium toxicity in Corydalis seedlings[J]. Journal of Grass Industry, 2017, 26(8):123-130(in Chinese).

    [28] KANG C H, OH S J, SHIN Y J, et al. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea[J]. Ecological Engineering, 2015, 74:402-407.
    [29] BURBANK M B, WEAVER T J, WILLIAMS B C, et al. Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria[J]. Geomicrobiology Journal, 2012, 29(4):389-395.
    [30] 徐进,魏嵬,韩璐,等. 重金属对油菜种子萌发和胚根生长的影响[J]. 西北植物学报,2007,27(11):2263-2268.

    XU J, WEI W, HAN L, et al. Effects of heavy metals on seed germination and radicle growth of rapeseed[J]. Northwest Plant Journal, 2007, 27(11):2263-2268(in Chinese).

    [31] 王继勇,陈加立,杨子陆,等. 一株产脲酶菌株的分离及其对Cd2+的去除研究[J]. 环境科学学报,2017,37(8):2911-2917.

    WANG J Y, CHEN J L, YNAG Y L, et al. Isolation of a strain producing urease and its removal of Cd2+[J]. Journal of Environmental Science, 2017, 37(8):2911-2917(in Chinese).

    [32] 龚伟,王伯初. 钙离子在植物抵抗非生物胁迫中的作用[J]. 生命的化学,2011,31(1):107-111.

    GONG W, WANG B C. The role of calcium ions in plant resistance to abiotic stress[J]. The Chemistry of Life, 2011, 31(1):107-111(in Chinese).

    [33] 冀旭,边六交. Ca2+诱导的淀粉液化芽孢杆菌α-淀粉酶分子的生物活性和结构变化[J]. 高等学校化学学报,2013,34(11):2517-2523.

    JI X, BIAN L J. Bioactivity and structural changes of Ca2+-derived Bacillus licheniformis α-amylase molecules induced by Ca2+[J]. Chemical Journal of Chinese Universities, 2013, 34(11):2517-2523(in Chinese).

    [34] 王瑞君,成莉风,冯湘沅,等. 一株产耐热甘露聚糖酶细菌的筛选及其酶学性质初探[J]. 中国麻业科学,2017,39(5):234-240.

    WANG R J, CHENG L F, FENG X Y, et al. Screening of a strain of heat-resistant mannanase-producing bacteria and its enzymatic properties[J]. Chinese Ma Education Science, 2017, 39(5):234-240(in Chinese).

    [35] 李成杰. 产脲酶菌诱导碳酸钙沉积对重金属Cd2+/Pb2+的去除研究[D]. 武汉:武汉科技大学,2018. LI C J. Removal of heavy metal Cd2+/Pb2+ by urease-induced calcium carbonate deposition[D]. Wuhan:Wuhan University of Science and Technology, 2018

    (in Chinese).

    [36] 李成杰,魏桃员,季斌,等. 不同钙源及Ca2+浓度对MICP的影响[J]. 环境科学与技术,2018,41(3):30-34.

    LI C J, WEI T Y, JI B, et al. Effects of different calcium sources and Ca2+ concentrations on MICP[J]. Environmental Science and Technology, 2018, 41(3):30-34(in Chinese).

    [37] KANG C H, HAN S H, SHIN Y J, et al. Bioremediation of Cd by microbially induced calcite precipitation[J]. Applied Biochemistry and Biotechnology, 2014, 172(4):1929-1937.
    [38] BENEDETTO F D, COSTAGLIOLA P, BENVENUTI M, et al. Arsenic incorporation in natural calcite lattice:Evidence from electron spin echo spectroscopy[J]. Earth and Planetary Science Letters, 2006, 246(3):458-465.
    [39] BAI R S, ABRAHAM T E. Studies on enhancement of Cr(Ⅵ) biosorption by chemically modified biomass of Rhizopus nigricans[J]. Water Research, 2002, 36(5):1224-1236.
    [40] CHEN Z, PAN X, CHEN H, et al. Biomineralization of Pb(Ⅱ) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from Lead-Zinc mine tailings[J]. Journal of Hazardous Materials, 2015, 301:531-537.
    [41] BEECH I, HANJAGSIT L,KALAJI M, et al. Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture[J]. Microbiology, 1999, 145(6):1491-1497.
    [42] YANG S L, SONG W. Study on precipitation process of spherical calcium carbonate controlled by polyaspartic acid[J]. Journal of Synthetic Crystals, 2013, 42(7):1475-1480.
    [43] BURNS J L, GINN B R, BATES D J, et al. Outer membrane-associated serine protease involved in adhesion of Shewanella oneidensis to Fe(Ⅲ) oxides[J]. Environmental Science and Technology, 2010, 44(1):68-73.
    [44] 韦岩松,李秀玲,梁小满,等. SDBS改性桑杆吸附剂对Cd2+的吸附机制试验研究[J]. 湿法冶金,2019,38(3):202-207.

    WEI Y S, LI X L, LIANG X M, et al. Experimental study on the adsorption mechanism of SDBS modified mulberry adsorbent on Cd2+[J]. Hydrometallurgy of China, 2019, 38(3):202-207(in Chinese).

  • 加载中
计量
  • 文章访问数:  1569
  • HTML全文浏览数:  1569
  • PDF下载数:  32
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-10

Ca2+添加对微生物矿化固结Cd2+的影响

    通讯作者: 赵兴青, E-mail: zhaoxq@cczu.edu.cn
  • 常州大学环境与安全工程学院, 常州, 213164
基金项目:

国家自然科学基金(41302025,41541016)资助.

摘要: 微生物诱导碳酸盐沉淀(MICP)可将游离的重金属离子转化为稳定的矿化物,在修复土壤重金属污染方面具有广阔的应用前景.本研究从铜陵矿区周边土壤中筛选得到1株产脲酶且耐镉矿化菌株CZW-1,16S rDNA鉴定为芽孢杆菌(Bacillus sp.),并将其利用于添加外源Ca2+的矿化固结Cd2+实验中.通过扫描电镜(SEM)、傅立叶红外光谱(FT-IR)以及X射线衍射(XRD)对矿化产物进行表征和分析.结果表明,添加一定浓度的Ca2+可促进细菌的生长,其最佳浓度为20 mmol·L-1.且Ca2+的添加可提高细菌的最小抑制浓度和促进脲酶活性,提高对Cd2+的矿化率,加钙前后的矿化率由68.93%提高到75.95%.通过对矿化物的定性分析,可知加钙前后的矿物沉淀由单一CdCO3变为CdCO3和CaCO3的复合沉淀,其表面也由严密紧实变成填满了小颗粒CdCO3的多孔状.

English Abstract

参考文献 (44)

目录

/

返回文章
返回