微耗损固相微萃取技术及其在有机污染物自由溶解态浓度测定中的应用

胡霞林, 刘景富. 微耗损固相微萃取技术及其在有机污染物自由溶解态浓度测定中的应用[J]. 环境化学, 2011, 30(1): 252-262.
引用本文: 胡霞林, 刘景富. 微耗损固相微萃取技术及其在有机污染物自由溶解态浓度测定中的应用[J]. 环境化学, 2011, 30(1): 252-262.
HU Xailin, LIU Jingfu. NEGLIGIBLE DEPLETION SOLID-PHASE MICROEXTRACTION AND ITS APPLICATION IN THE DETERMINATION OF FREELY DISSOLVED CONCENTRATION OF ORGANIC POLLUTANTS[J]. Environmental Chemistry, 2011, 30(1): 252-262.
Citation: HU Xailin, LIU Jingfu. NEGLIGIBLE DEPLETION SOLID-PHASE MICROEXTRACTION AND ITS APPLICATION IN THE DETERMINATION OF FREELY DISSOLVED CONCENTRATION OF ORGANIC POLLUTANTS[J]. Environmental Chemistry, 2011, 30(1): 252-262.

微耗损固相微萃取技术及其在有机污染物自由溶解态浓度测定中的应用

  • 基金项目:

    国家自然科学基金项目(20921063, 21007047)

    高等学校博士学科点专项科研基金(20090072120058)资助.

NEGLIGIBLE DEPLETION SOLID-PHASE MICROEXTRACTION AND ITS APPLICATION IN THE DETERMINATION OF FREELY DISSOLVED CONCENTRATION OF ORGANIC POLLUTANTS

  • Fund Project:
  • 摘要: 自由溶解态浓度可用于评价污染物的生物有效性,评估污染物的环境风险.本文介绍了微耗损固相微萃取(nd-SPME)技术测定自由溶解态浓度的原理、测定条件和基质干扰等影响因素,并着重总结归纳了nd-SPME技术在在环境基质和生物基质中有机污染物自由溶解态浓度测定中的应用.
  • 加载中
  • [1] 胡霞林,刘景富,卢士燕,等.环境污染物的自由溶解态浓度与生物有效性[J]. 化学进展, 2009, 21(2/3):514

    -523

    [2] [2] Heringa M B, Hermens J L M. Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME)[J]. Trends Anal Chem, 2003, 22(10):575-587
    [3] [3] Traina S J, McAvoy D C, Versteeg D J. Association of linear alkylbenzenesulfonates with dissolved humic substances and its effect on bioavailability[J]. Environ Sci Technol, 1996, 30 (4):1300-1309
    [4] [4] Meadows J C, Echols K R, Huckins J N, et al. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown trout (Salmo trutta)[J]. Environ Sci Technol, 1998, 32 (12):1847-1852
    [5] [5] Verbruggen E M J, Van Loon W, Tonkes M, et al. Biomimetic extraction as a tool to identify chemicals with high bioconcentration potential: An illustration by two fragrances in sewage treatment plant effluents and surface waters[J]. Environ Sci Technol, 1999, 33(5):801-806
    [6] [6] Ke R H, Luo J P, Sun L W, et al. Predicting bioavailability and accumulation of organochlorine pesticides by Japanese medaka in the pre-sence of humic acid and natural organic matter using passive sampling membranes[J]. Environ Sci Technol, 2007, 41(19): 6698-6703
    [7] [7] Rasmussen K E, Pedersen-Bjergaard S. Developments in hollow fibre-based, liquid-phase microextraction[J]. Trends Anal Chem, 2004, 23 (1):1-10
    [8] [8] Jeannot M A, Cantwell F F. Solvent microextraction as a speciation tool: Determination of free progesterone in a protein solution[J]. Anal Chem, 1997, 69(15):2935-2940
    [9] [9] Liu J F, Hu X L, Peng J F, et al. Equilibrium sampling of freely dissolved alkylphenols into a thin film of 1-octanol supported on a hollow fiber membrane[J]. Anal Chem, 2006, 78 (24):8526-8534
    [10] [10] Liu J F, Jonsson J A, Mayer P. Equilibrium sampling through membranes of freely dissolved chlorophenols in water samples with hollow fiber supported liquid membrane[J]. Anal Chem, 2005, 77(15):4800-4809
    [11] [11] Hu X L, Liu J F, Jonsson J A, et al. Development of negligible depletion hollow fiber-protected liquid-phase microextraction for sensing freely dissolved triazines[J]. Environ Toxicol Chem, 2009, 28(2):231-238
    [12] [12] Arthur C L, Pawliszyn J. Solid-phase microextraction with thermal-desorption using fused-silica optical fibers[J]. Anal Chem, 1990, 62(19):2145-2148
    [13] [13] Ouyang G, Pawliszyn J. SPME in environmental analysis[J]. Anal Bioanal Chem, 2006, 386 (4):1059-1073
    [14] [14] Vuckovic D, Zhang X, Cudjoe E. Solid-phase microextraction in bioanalysis: New devices and directions[J]. J Chromatogr A, 2010, 1217 (25):4041-4060
    [15] [15] Risticevic S, Lord H, Gorecki T. Protocol for solid-phase microextraction method development[J]. Nature Protocols, 2010, 5(1):122-139
    [16] [16] Kopinke F D, Porschmann J, Remmler M. Sorption behavior of anthropogenic humic matter[J]. Naturwissenschaften, 1995, 82 (1):28-30
    [17] [17] Vaes W H J, Ramos E U, Verhaar H J M, et al. Measurement of the free concentration using solid-phase microextraction: Binding to protein[J]. Anal Chem, 1996, 68(24):4463-4467
    [18] [18] Mayer P, Vaes W H J, Wijnker F, et al. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers[J]. Environmental Science & Technology 2000, 34, (24):5177-5183
    [19] [19] Mayer P, Tolls J, Hermens J L M, et al. Equilibrium sampling devices[J]. Environ Sci Technol, 2003, 37(15):270A-270A
    [20] [20] Oomen A G, Mayer P, Tolls J. Nonequilibrium solid phase microextraction for determination of the freely dissolved concentration of hydrophohic organic compounds: Matrix effects and limitations[J]. Anal Chem, 2000, 72 (13):2802-2808
    [21] [21] Zeng E Y, Noblet J A. Theoretical considerations on the use of solid-phase microextraction with complex environmental samples[J]. Environ Sci Technol, 2002, 36 (15):3385-3392
    [22] [22] Poerschmann J, Zhang Z Y, Kopinke F D, et al. Solid phase microextraction for determining the distribution of chemicals in aqueous matrices[J]. Anal Chem, 1997, 69 (4):597-600
    [23] [23] Ramos E U, Meijer S N, Vaes W H J, et al. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals[J]. Environ Sci Technol, 1998, 32 (21):3430-3435
    [24] [24] Witt G, Liehr G A, Borck D. Matrix solid-phase microextraction for measuring freely dissolved concentrations and chemical activities of PAHs in sediment cores from the western Baltic Sea[J]. Chemosphere 2009, 74(4):522-529
    [25] [25] Lutzhoft H C H, Vaes W H J, Freidig A P, et al. Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by "negligible-depletion" SPME-HPLC[J]. Environ Sci Technol, 2000, 34(23):4989-4994
    [26] [26] Heringa M B, Pastor D, Algra J, et al. Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: An example with [H-3]estradiol[J]. Anal Chem, 2002, 74(23):5993-5997
    [27] [27] Vaes W H J, Ramos E U, Hamwijk C, et al. Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems[J]. Chem Res Toxicol., 1997, 10 (10):1067-1072
    [28] [28] Heringa M B, Hogevonder C, Busser F, et al. Measurement of the free concentration of octylphenol in biological samples with negligible depletion-solid phase microextraction (nd-SPME): Analysis of matrix effects[J]. J Chromatogr B, 2006, 834(1/2):35-41
    [29] [29] Poon K F, Lam P K S, Lam M H W. Determination of polychlorinated biphenyls in human blood serum by SPME[J]. Chemosphere, 1999, 39(6):905-912
    [30] [30] Zhang Z Y, Poerschmann J, Pawliszyn J. Direct solid phase microextraction of complex aqueous samples with hollow fibre membrane protection[J]. Anal Commun, 1996, 33 (7):219-221
    [31] [31] Escher B I, Berg M, Muhlemann J, et al. Determination of liposome/water partition coefficients of organic acids and bases by solid-phase microextraction[J]. Analyst, 2002, 127 (1):42-48
    [32] [32] Kopinke F D, Georgi A, Mackenzie K. Sorption and chemical reactions of PAHs with dissolved humic substances and related model polymers[J]. Acta Hydroch Hydrob, 2001, 28(7):385-399
    [33] [33] Ohlenbusch G, Kumke M U, Frimmel F H. Sorption of phenols to dissolved organic matter investigated by solid phase microextraction[J]. Sci Total Environ, 2000, 253 (1/3):63-74
    [34] [34] Droge S T J, Sinnige T L, Hermens J L M. Analysis of freely dissolved alcohol ethoxylate homologues in various seawater matrixes using solid-phase microextraction[J]. Anal Chem, 2007, 79 (7):2885-2891
    [35] [35] Kramer N I, van Eijkeren J C H, Hermens J L M. Influence of albumin on sorption kinetics in solid-phase microextraction: Consequences for chemical analyses and uptake processes[J]. Anal Chem, 2007, 79(18):6941-6948
    [36] [36] Mayer P, Karlson U, Christensen P S, et al. Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers[J]. Environ Sci Technol, 2005, 39(16):6123-6129
    [37] [37] Mayer P, Fernqvist M M, Christensen P S, et al. Enhanced diffusion of polycyclic aromatic hydrocarhons in artificial and natural aqueous solutions[J]. Environ Sci Technol, 2007, 41(17):6148-6155
    [38] [38] Poerschmann J, Kopinke F D, Pawliszyn J. Solid phase microextraction to study the sorption of organotin compounds onto particulate and dissolved humic organic matter[J]. Environ Sci Technol, 1997, 31 (12):3629-3636
    [39] [39] Yuan H D, Pawliszyn J. Application of solid-phase microextraction in the determination of diazepam binding to human serum albumin[J]. Anal Chem, 2001, 73 (18):4410-4416
    [40] [40] van Eijkeren J C H, Heringa M B, Hermens J L M. Modelling SPME data from kinetic measurements in complex samples[J]. Analyst 2004, 129 (11):1137-1142
    [41] [41] Bandow N, Altenburger R, Brack W. Application of nd-SPME to determine freely dissolved concentrations in the presence of green algae and algae-water partition coefficients[J]. Chemosphere 2010, 79(11):1070-1076
    [42] [42] Ulrich S. Solid-phase microextraction in biomedical analysis[J]. J Chromatogr A, 2000, 902(1):167-194
    [43] [43] You J, Landrum P F, Lydy M J. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants[J]. Environ Sci Technol, 2006, 40 (20):6348-6353
    [44] [44] Ter Laak T L, Agbo S O, Barendregt A, et al. Freely dissolved concentrations of PAHs in soil pore water: Measurements via solid-phase extraction and consequences for soil tests[J]. Environ Sci Technol, 2006, 40(4):1307-1313
    [45] [45] Ter Laak T L, Barendregt A, Hermens J L M. Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked aged, and field-contaminated soils[J]. Environ Sci Technol, 2006, 40 (7):2184-2190
    [46] [46] Artola-Garicano E, Borkent I, Hermens J L M., et al. Removal of two polycyclic musks in sewage treatment plants: Freely dissolved and total concentrations[J]. Environ Sci Technol, 2003, 37 (14):3111-3116
    [47] [47] Kopinke F D, Georgi A, MacKenzie K. Sorption of pyrene to dissolved humic substances and related model polymers. 1. Structure-property correlation[J]. Environ Sci Technol, 2001, 35 (12):2536-2542
    [48] [48] Poerschmann J, Gorecki T, Kopinke F D. Sorption of very hydrophobic organic compounds onto poly(dimethylsiloxane) and dissolved humic organic matter. 1. Adsorption or partitioning of VHOC on PDMS-coated solid-phase microextraction fibers-A never-ending story?[J]. Environ Sci Technol, 2000, 34(17):3824-3830
    [49] [49] Poerschmann J, Kopinke F D. Sorption of very hydrophobic organic Compounds (VHOCs) on dissolved humic organic matter (DOM). 2. Measurement of sorption and application of a Flory-Huggins concept to interpret the data[J]. Environ Sci Technol, 2001, 35 (6):1142-1148
    [50] [50] MacKenzie K, Georgi A, Kumke M, et al. Sorption of pyrene to dissolved humic substances and related model polymers. 2. Solid-phase microextraction (SPME) and fluorescence quenching technique (FQT) as analytical methods[J]. Environ Sci Technol, 2002, 36 (20):4403-4409
    [51] [51] King A J, Readman J W, Zhou J L. Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction-gas chromatography-mass spectrometry[J]. Anal Chim Acta, 2004, 523 (2):259-267
    [52] [52] Yabuta H, Fukushima M, Tanaka F, et al. Solid-phase microextraction for the evaluation of partition coefficients of a chlorinated dioxin and hexachlorobenzene into humic substances[J]. Anal Sci, 2004, 20(5):787-791
    [53] [53] Mezin L C, Hale R C. Combined effects of humic acids and salinity on solid-phase microextraction of DDT and chlorpyrifos, an estimator of their bioavailability[J]. Environ Toxicol Chem, 2004, 23(3):576-582
    [54] [54] Tanaka F, Fukushima M, Kikuchi A, et al. Influence of chemical characteristics of humic substances on the partition coefficient of a chlorinated dioxin[J]. Chemosphere, 2005, 58 (10):1319-1326
    [55] [55] Hu X L, Peng J F, Liu J F, et al. Evaluating the impacts of some environmentally relevant factors on the availability of bisphenol A with negligible-depletion SPME[J]. Chemosphere, 2006, 65(11):1935-1941
    [56] [56] Georgi A, Reichl A, Trommler U, et al. Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. I. Chlorination of PAHs[J]. Environ Sci Technol, 2007, 41 (20):7003-7009
    [57] [57] Porschmann J, Kopinke F D, Pawliszyn J. Solid-phase microextraction for determining the binding state of organic pollutants in contaminated water rich in humic organic matter[J]. J Chromatogr A, 1998, 816 (2):159-167
    [58] [58] Doll T E, Frimmel F H, Kumke M U, et al. Interaction between natural organic matter (NOM) and polycyclic aromatic compounds (PAC)-comparison of fluorescence quenching and solid phase micro extraction (SPME)[J]. Fresenius J Anal Chem, 1999, 364(4):313-319
    [59] [59] Yang Z Y, Maruya K A, Greenstein D, et al. Experimental verification of a model describing solid phase microextraction (SPME) of freely dissolved organic pollutants in sediment porewater[J]. Chemosphere, 2008, 72(10):1435-1440
    [60] [60] Kraaij R, Mayer P, Busser F J M, et al. Measured pore-water concentrations make equilibrium partitioning work-A data analysis[J]. Environ Sci Technol, 2003, 37 (2):268-274
    [61] [61] Conder J M, La Point T W, Lotufo G R, et al. Nondestructive, minimal-disturbance, direct-burial solid-phase microextraction fiber tecnique for measuring TNT in sediment[J]. Environ Sci Technol, 2003, 37(8):1625-1632
    [62] [62] Lee S, Gan J, Liu, W P, et al. Evaluation of Kd underestimation using solid phase microextraction[J]. Environ Sci Technol, 2003, 37 (24):5597-5602
    [63] [63] Ter Laak T L, Mayer P, Busser F J M, et al. Sediment dilution method to determine sorption coefficients of hydrophobic organic chemicals[J]. Environ Sci Technol, 2005, 39(11):4220-4225
    [64] [64] You J, Pehkonen S, Landrum P F, et al. Desorption of hydrophobic compounds from laboratory-spiked sediments measured by tenax absorbent and matrix solid-phase microextraction[J]. Environ Sci Technol, 2007, 41 (16):5672-5678
    [65] [65] Bondarenko S, Spurlock F, Gan J. Analysis of pyrethroids in sediment pore water by solid-phase microextraction[J]. Environ Toxicol Chem, 2007, 26(12):2587-2593
    [66] [66] Hunter W, Xu Y P, Spurlock F, et al. Using disposable polydimethylsiloxane fibers to assess the bioavailability of permethrin in sediment[J]. Environ Toxicol Chem, 2008, 27(3):568-575
    [67] [67] Maruya K A, Zeng E Y, Tsukada D, et al. A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water[J]. Environ Toxicol Chem, 2009, 28 (4):733-740
    [68] [68] Ghosh U, Hawthorne S B. Particle-scale measurement of PAH aqueous equilibrium partitioning in impacted sediments[J]. Environ Sci Technol, 2010, 44 (4):1204-1210
    [69] [69] Van der Wal L, Jager T, Fleuren R, et al. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil[J]. Environ Sci Technol, 2004, 38(18):4842-4848
    [70] [70] van der Wal L,van Gestel C A M,Hermens J L M. Solid phase microextraction as a tool to predict internal concentrations of soil contaminants in terrestrial organisms after exposure to a laboratory standard soil[J]. Chemosphere, 2004, 54 (4):561-568
    [71] [71] Jonker M T O, van der Heijden S A, Kreitinger J P, et al. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction[J]. Environ Sci Technol, 2007, 41(21):7472-7478
    [72] [72] ter Laak T L, Barendregt A, Hermens J L M. Grinding and sieving soil affects the availability of organic contaminants: A kinetic analysis[J]. Chemosphere, 2007, 69(4):613-620
    [73] [73] Prosen H, Fingler S, Zupancic-Kralj L, et al. Partitioning of selected environmental pollutants into organic matter as determined by solid-phase microextraction[J]. Chemosphere, 2007, 66 (8):1580-1589
    [74] [74] Legind C N, Karlson U, Burken J G, et al. Determining chemical activity of (semi)volatile compounds by headspace solid-phase microextraction[J]. Anal Chem, 2007, 79 (7):2869-2876
    [75] [75] Shen G, Huang J, Yu, G. Measurement of the free concentrations of alkyl phenols and bisphenol A to determine their biodegradation kinetics by activated sludge[J]. Chin Sci Bull, 2007, 52(20):2766-2770
    [76] [76] Musteata F M, Pawliszyn J. Assay of stability, free and total concentration of chlorhexidine in saliva by solid phase microextraction[J]. J Pharmaceut Biomed Anal, 2005, 37(5):1015-1024
    [77] [77] Artola-Garicano E, Vaes W H J, Hermens J L M. Validation of negligible depletion solid-phase microextraction as a tool to determine tissue/blood partition coefficients for semivolatile and nonvolatile organic chemicals[J]. Toxicol Appl Pharmacol, 2000, 166 (2):138-144
    [78] [78] Heringa M B, Schreurs R, Busser F, et al. Toward more useful in vitro toxicity data with measured free concentrations[J]. Environ Sci Technol, 2004, 38(23):6263-6270
    [79] [79] Zhang X, Es-haghi A, Musteata F M, et al. Quantitative in vivo microsampling for pharmacokinetic studies based on an integrated solid-phase microextraction system[J]. Anal Chem, 2007, 79(12):4507-4513
    [80] [80] Es-Haghi A, Zhang X, Musteata F M, et al. Evaluation of bio-compatible poly(ethylene glycol)-based solid-phase microextraction fiber for in vivo pharmacokinetic studies of diazepam in dogs[J]. Analyst, 2007, 132 (7):672-678
    [81] [81] Yuan H D, Ranatung R, Carr P W, et al. Determination of equilibrium constant of alkylbenzenes binding to bovine serum albumin by solid phase microextraction[J]. Analyst, 1999, 124(10):1443-1448
    [82] [82] Theodoridis G, Application of solid-phase microextraction in the investigation of protein binding of pharmaceuticals[J]. J Chromatogr B, 2006, 830 (2):238-244
    [83] [83] Musteata F M, Pawliszyn J. Study of ligand-receptor binding using SPME: Investigation of receptor, free, and total ligand concentrations. J. Proteome Res, 2005, 4 (3):789-800
    [84] [84] Musteata F M, Pawliszyn J, Qian M G, et al. Determination of drug plasma protein binding by solid phase microextraction[J]. J Pharmaceu Sci, 2006, 95 (8):1712-1722
    [85] [85] Musteata M L, Musteata F M, Pawliszyn J. Biocompatible solid-phase microextraction coatings based on polyacrylonitrile and solid-phase extraction phases[J]. Anal Chem, 2007, 79(18):6903-6911
    [86] [86] Verbruggen E M J, Vaes W H J, Parkerton T F, et al. Polyacrylate coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity[J]. Environ Sci Technol, 2000, 34(2):324-331
    [87] [87] Musteata F M, Pawliszyn J. Determination of free concentration of paclitaxel in liposome formulations[J]. J Pharm Pharmaceu Sci, 2006, 9 (2):231-237
    [88] [88] Alix A, Collot D, Nenon J P, et al. Measurement of insecticide uptake and effective fraction in a beneficial insect using solid phase microextraction[J]. Anal Chem, 2001, 73(13):3107-3111
    [89] [89] Pino V, Ayala J H, Gonzalez V, et al. Solid-phase microextraction coupled to gas chromatography/mass spectrometry for determining polycyclic aromatic hydrocarbon-micelle partition coefficients[J]. Anal Chem, 2004, 76 (15):4572-4578
    [90] [90] Pino V, Conde F J, Ayala J H, et al. Study of the interactions between phenolic compounds and micellar media using micellar solid-phase microextraction/gas chromatography[J]. J Chromatogr A, 2005, 1099 (1/2):64-74
    [91] [91] Pino V, Afonso A M, Ayala J H, et al. Micellar solid-phase microextraction for determining partition coefficients of substituted polycyclic aromatic hydrocarbons in micellar media: possible prediction of hydrocarbon-micelle behaviour[J]. Anal Bioanal Chem, 2007, 387(6):2271-2281
    [92] [92] Pino V, Baltazar Q Q, Anderson J L. Examination of analyte partitioning to monocationic and dicationic imidazolium-based ionic liquid aggregates using solid-phase microextraction-gas chromatography[J]. J Chromatogr B, 2007, 1148(1):92-99
    [93] [93] Hu X L, Liu J F, Mayer P, et al. Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene[J]. Environ Toxicol Chem, 2008, 27(9):1868-1874
    [94] [94] Hu X L, Liu J F, Zhou Q F, et al. Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: Evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction[J]. Chemosphere, 2010, 80 (7):693-700
    [95] [95] Benhabib K, Town R M, van Leeuwen H P. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME)[J]. Langmuir, 2009, 25(6):3381-3386
    [96] [96] Musteata F M, Pawliszyn J. Bioanalytical applications of solid-phase microextraction[J]. Trends Anal Chem, 2007, 26(1):36-45
    [97] [97] Jahnke A, Mayer P. Do complex matrices modify the sorptive properties of polydimethylsiloxane (PDMS) for non-polar organic chemicals?[J]. J Chromatogr A, 2010, 1217 (29):4765-4770.
  • 加载中
计量
  • 文章访问数:  984
  • HTML全文浏览数:  901
  • PDF下载数:  331
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-09-02
胡霞林, 刘景富. 微耗损固相微萃取技术及其在有机污染物自由溶解态浓度测定中的应用[J]. 环境化学, 2011, 30(1): 252-262.
引用本文: 胡霞林, 刘景富. 微耗损固相微萃取技术及其在有机污染物自由溶解态浓度测定中的应用[J]. 环境化学, 2011, 30(1): 252-262.
HU Xailin, LIU Jingfu. NEGLIGIBLE DEPLETION SOLID-PHASE MICROEXTRACTION AND ITS APPLICATION IN THE DETERMINATION OF FREELY DISSOLVED CONCENTRATION OF ORGANIC POLLUTANTS[J]. Environmental Chemistry, 2011, 30(1): 252-262.
Citation: HU Xailin, LIU Jingfu. NEGLIGIBLE DEPLETION SOLID-PHASE MICROEXTRACTION AND ITS APPLICATION IN THE DETERMINATION OF FREELY DISSOLVED CONCENTRATION OF ORGANIC POLLUTANTS[J]. Environmental Chemistry, 2011, 30(1): 252-262.

微耗损固相微萃取技术及其在有机污染物自由溶解态浓度测定中的应用

  • 1.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 2.  同济大学环境科学与工程学院, 上海, 200092
基金项目:

国家自然科学基金项目(20921063, 21007047)

高等学校博士学科点专项科研基金(20090072120058)资助.

摘要: 自由溶解态浓度可用于评价污染物的生物有效性,评估污染物的环境风险.本文介绍了微耗损固相微萃取(nd-SPME)技术测定自由溶解态浓度的原理、测定条件和基质干扰等影响因素,并着重总结归纳了nd-SPME技术在在环境基质和生物基质中有机污染物自由溶解态浓度测定中的应用.

English Abstract

参考文献 (97)

返回顶部

目录

/

返回文章
返回