[1]
|
Brusseau M L, Rao P S C. Sorption nonideality during organic contaminant transport in porous media[J]. Crit Rev Environ Control, 1989, 19: 33-99
|
[2]
|
McCall P J, Agin G L. Desorption kinetics of picloram as affected by residence time in the soil[J]. Environ Toxicol Chem, 1985, 4: 37-44
|
[3]
|
Steinberg S M, Pignatello J J, Sawhney B L. Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores[J]. Environ Sci Technol, 1987, 21:1201-1208
|
[4]
|
Pereira W E, Rostad C E, Chiou C T, et al. Contamination of estuarine water, biota, and sediment by halogenated organic compounds: a field study[J]. Environ Sci Technol, 1988, 22: 772-778
|
[5]
|
Pignatello J J. Slowly reversible sorption of aliphatic halocarbons in soils. Ⅰ. Formation of residual fractions[J]. Environ Toxicol Chem, 1990a, 9: 1107-1115
|
[6]
|
Pignatello J J. Slowly reversible sorption of aliphatic halocarbons in soils. Ⅱ. Mechanistic aspects[J]. Environ Toxicol Chem, 1990b, 9: 1117-1126
|
[7]
|
Ball W P, Roberts P V. Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium[J]. Environ Sci Technol, 1991, 25: 1223-1236
|
[8]
|
Pavlostathis S G, Jaglal K. Desorptive behavior of trichloroethylene in contaminated soil[J]. Environ Sci Technol, 1991, 25: 274-279
|
[9]
|
McGroddy S E, Farrington J W. Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston harbor, Massachusetts[J]. Environ Sci Technol, 1995, 29:1542-1550
|
[10]
|
Gschwend P M, Wu S C. On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants[J]. Environ Sci Technol, 1985, 19: 90-96
|
[11]
|
Pignatello J J, Ferrandino F J, Huang L Q. Elution of aged and freshly added herbicides from a soil[J]. Environ Sci Technol, 1993, 27:1563-1571
|
[12]
|
Kan A T, Fu G, Tomson M B. Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction[J]. Environ Sci Technol, 1994, 28:859-867
|
[13]
|
Chen W, Kan A T, Tomson M B. Irreversible adsorption of chlorinated benzenes to natural sediments-implication for sediment quality criteria[J]. Environ Sci Technol, 2000, 34:385-392
|
[14]
|
李晓军,李培军,蔺昕.土壤中难降解有机污染物锁定机理研究进展[J].应用生态学报,2007,18(7):1624-1630
|
[15]
|
李久海,潘根兴.土壤中有机污染物的老化及其环境意义[J].土壤通报,2006,27(2):378-382
|
[16]
|
赵青,李培军.有机污染物在土壤中老化行为的研究进展[J].生态学杂志,2008,27(3):476-479
|
[17]
|
党志,于虹,黄伟林,等.土壤/沉积物吸附有机污染物机理研究的进展[J].化学通报,2001,2:81-85
|
[18]
|
李俊国,孙红文.芘在土壤中的长期吸附和解吸行为[J].环境科学,2006,27(1):165-170
|
[19]
|
张先明,潘波,刘文新,等.天然土壤中菲的解吸行为特征研究[J].环境科学,2007,28(2):272-277
|
[20]
|
刘广良,戴树桂,钱芸.农药涕灭威在土壤中的不可逆吸附行为[J].环境科学学报,2000,20(5):597-602
|
[21]
|
陈华林,陈英旭,王子健,等.中国南方河流和湖泊沉积物对菲的吸附特性[J].环境科学,2003,24(5):120-124
|
[22]
|
梁重山,党志,刘丛强,等.菲在土壤/沉积物上的吸附-解吸过程及滞后现象的研究[J].土壤学报,2004,41(3):329-335
|
[23]
|
冉勇,林峥,王锡莉,等.对二氯苯在泥炭上的吸附和解吸[J].科学通报, 2000,45(s1):2689-2694
|
[24]
|
Linz D G, Nakles D V. Environmentally acceptable endpoints in soil: Risk-based approach to contaminated site management based on availability of chemicals in soil[M]. Annapolis MD USA: American Academy of Environmental Engineers, 1997
|
[25]
|
Lipnick R L, Hermens J L M, Jones K C, et al. Persistent, Accumulative and Toxic Chemicals Ⅰ: Fate and Exposure[M]. Washington, DC, USA: ACS Symposium Series 772. American Chemical Society, 2001
|
[26]
|
Kan A T, Fu G, Hunter M, et al. Irreversible sorption of neutral hydrocarbons to sediments: experimental observations and model predictions[J]. Environ Sci Technol, 1998, 32:892-902
|
[27]
|
Chen W, Kan A T, Fu G, et al. Adsorption-desorption behaviors of hydrophobic organic compounds in sediments of Lake Charles, Louisiana, USA[J]. Environ Toxicol Chem, 1999, 18:1610-1616
|
[28]
|
Kan A T, Chen W, Tomson M B. Desorption kinetics of neutral hydrophobic organic compounds from field-contaminated sediment[J]. Environ Pollut, 2000, 108:81-89
|
[29]
|
Chen W, Kan A T, Fu G, et al. Factors affecting the release of hydrophobic organic contaminants from natural sediments[J]. Environ Toxicol Chem, 2000, 19:2401-2408
|
[30]
|
Yang W, Duan L, Zhang N, et al. Resistant desorption of hydrophobic organic contaminants in typical Chinese soils: Implication for long-term fate and soil quality standards[J]. Environ Toxcol Chem, 2008, 27:235-242
|
[31]
|
Duan L, Zhang N, Wang Y, et al. Release of hexachlorocyclohexanes from historically and freshly contaminated soils in China: Implications for fate and regulation[J]. Environ Pollut, 2008, 156:753-759
|
[32]
|
Yang W, Zhang J, Zhang C, et al. Sorption and resistant desorption of atrazine in typical Chinese soils[J]. J Environ Qual, 2009, 38:171-179
|
[33]
|
罗晓丽,齐亚超,张承东,等.多环芳烃在中国两种典型土壤中的吸附和解吸行为研究[J].环境科学学报,2008,28(7):1375-1380
|
[34]
|
张冬梅,陈蓓,王瑜,等.疏水性有机污染物在草甸土中的吸附和解吸行为[J].环境化学,2008,27(3):345-349
|
[35]
|
Pignatello J J, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Environ Sci Technol, 1996, 30:1-11
|
[36]
|
Luthy R G, Aiken G R, Brusseau M L, et al. Sequestration of hydrophobic organic contaminants by geosorbents[J]. Environ Sci Technol, 1997, 31:3341-3347
|
[37]
|
Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environ Sci Technol, 2000, 34:4259-4265
|
[38]
|
Chiou C T. Partition and adsorption of organic contaminants in environmental systems[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2002:100-105
|
[39]
|
Werth C J, McMillan S A, Castilla H J. Structural evaluation of slow desorbing sites in model and natural solids using temperature stepped desorption profiles. 1. Model development[J]. Environ Sci Technol, 2000, 34:2959-2965
|
[40]
|
Ahn S, Werner D, Karapanagioti H K, et al. Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon[J]. Environ Sci Technol, 2005, 39:6516-6526
|
[41]
|
Jonker M T O, Koelmans A A. Extraction of polycyclic aromatic hydrocarbons from soot and sediment: solvent evaluation and implications for sorption mechanism[J]. Environ Sci Technol, 2002, 36:4107-4113
|
[42]
|
Shor L M, Rockne K J, Taghon G L, et al. Desorption kinetics for field-aged polycyclic aromatic hydrocarbons from sediments[J]. Environ Sci Technol, 2003, 37:1535-1544
|
[43]
|
Li J, Werth C J. Slow desorption mechanisms of volatile organic chemical mixtures in soil and sediment micropores[J]. Environ Sci Technol, 2004, 38:440-448
|
[44]
|
Ran Y, Xing B, Rao P S C, et al. Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate[J]. Environ Sci Technol, 2004, 38:4340-4348
|
[45]
|
Carroll K M, Harkness M R, Bracco A A, et al. Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments[J]. Environ Sci Technol, 1994, 28:253-258
|
[46]
|
Weber W J Jr, Huang W. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions[J]. Environ Sci Technol, 1996, 30:881-888
|
[47]
|
LeBoeuf E J, Weber W J Jr. Macromolecular characteristics of natural organic matter. 2. Sorption and desorption behavior[J]. Environ Sci Technol, 2000, 34:3632-3640
|
[48]
|
Johnson M D, Keinath T M, Weber W J Jr. A distributed reactivity model for sorption by soils and sediments. 14. characterization and modeling of phenanthrene desorption rates[J]. Environ Sci Technol, 2001, 35:1688-1695
|
[49]
|
Xia G, Pignatello J J. Detailed sorption isotherms of polar and apolar compounds in a high-organic soil[J]. Environ Sci Technol, 2001, 35:84-94
|
[50]
|
Vieth W R. Diffusion in and through polymers[M]. Munich: Hanser Verlag, 1991
|
[51]
|
Chiou C T, Kile D E. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations[J]. Environ Sci Technol, 1998, 32:338-343
|
[52]
|
Chiou C T, Kile D E, Rutherford D W, et al. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity[J]. Environ Sci Technol, 2000, 34:1254-1258
|
[53]
|
Xiao B, Yu Z, Huang W, Song J, et al. Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants[J]. Environ Sci Technol, 2004, 38:5842-5852
|
[54]
|
Cornelissen G, Gustafsson O. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates[J]. Environ Sci Technol, 2004, 38:148-155
|
[55]
|
Cornelissen G, Elmquist M, Groth I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environ Sci Technol, 2004, 38:3574-3580
|
[56]
|
Adamson A W. Physical Chemistry of Surface[M]. New York: J Wiley & Sons Inc, 1990
|
[57]
|
White J C, Kelsey J W, Hatzinger P B, et al. Factors affecting sequestration and bioavailability of phenanthrene in soils[J]. Environ Toxcol Chem, 1997, 16:2040-2045
|
[58]
|
Everett D H. Adsorption Hysteresis. The solid-gas interface[M]. Vol. 2, Flood E A (ed.), New York: Marcel Dekker Inc, 1967
|
[59]
|
Burgess C C V, Everett D H, Nuttal S. Adsorption hysteresis in porous materials[J]. Pure and Appl Chem, 1989, 61:1845-1852
|
[60]
|
White J C, Kelsey J W, Hatzinger P B, et al. Factors affecting sequestration and bioavailability of phenanthrene in soils[J]. Environ Toxcol Chem, 1997, 16:2040-2045
|
[61]
|
Weber W J Jr, Kim S H, Johnson M D. Distributed reactivity model for sorption by soils and sediments. 15. High-concentration co-contaminant effects on phenanthrene sorption and desorption[J]. Environ Sci Technol, 2002, 36:3625-3634
|
[62]
|
Sander M, Lu Y, Pignatello J J. Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion[J]. Environ Sci Technol, 2006, 40:170-178
|
[63]
|
Sander M, Pignatello J J. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter[J]. Environ Sci Technol, 2005, 39:7476-7484
|
[64]
|
Lu Y, Pignatello J J. Demonstration of the "conditioning effect" in soil organic matter in support of a pore deformation mechanism for sorption hysteresis[J]. Environ Sci Technol, 2002, 36:4553-4561
|
[65]
|
Braida W J, Pignatello J J, Lu Y, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environ Sci Technol, 2003, 37:409-417
|
[66]
|
Lu Y, Pignatello J J. History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter[J]. Environ Sci Technol, 2004, 38:5853-5862
|
[67]
|
Valsaraj K T, Thibodeaux L J, Reible D D. A quasi-steady-state pollutant flux methodology for determining sediment quality criteria[J]. Environ Toxicol Chem, 1997, 16:391-396
|
[68]
|
Stroo H F, Jensen R, Loehr R C, et al. Environmentally acceptable endpoints for PAHs at a manufactured gas plant site[J]. Environ Sci Technol, 2000, 34:3831-3836
|
[69]
|
Xing B, Pignatello J J, Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environ Sci Technol, 1996, 30:2432-2440
|
[70]
|
Gustafsson O, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability[J]. Environ Sci Technol, 1997, 31:203-209
|
[71]
|
Xia G, Ball W P. Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent[J]. Environ Sci Technol, 1999, 33:262-269
|
[72]
|
Accardi-Dey A, Gschwend P M. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments[J]. Environ Sci Technol, 2002, 36:21-29
|
[73]
|
Cornelissen G, Elmquist M, Groth I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environ Sci Technol, 2004, 38:3574-3580
|
[74]
|
Manes M. Activated carbon adsorption fundaments.//Encyclopedia of environmental analysis and remediation[M]. Meyers R A eds. New York: John Wiley & Sons, 1998:26-68
|
[75]
|
Chen W, Kan A T, Newell C J, et al. More realistic soil cleanup standards with dual-equilibrium desorption[J]. Gournd Water, 2002, 40:153-164
|
[76]
|
Chen W, Cong L, Hu H L, et al. Release of adsorbed polycyclic aromatic hydrocarbons under cosolvent treatment: Implications for availability and fate[J]. Environ Toxicol Chem, 2008, 27:112-118
|
[77]
|
Jensen P, Hansen H, Rasmussen J, et al. Sorption-controlled degradation kinetics of MCPA in soil[J]. Environ Sci Technol, 2004, 38:6662-6668
|
[78]
|
Gomez-Lahoz C, Ortega-Calvo J. Effect of slow desorption on the kinetics of biodegradation of polycyclic aromatic hydrocarbons[J]. Environ Sci Technol, 2005, 39:8776-8783
|
[79]
|
Manhart C S, Chaney R C. Modeling TPH desorption in unconsolidated dune sand during remediation using dual-equilibrium desorption (DED) model[J]. J ASTM Intern, 2007, 3:1-7
|
[80]
|
Beckles D M, Chen W, Hughes J B. Bioavailability of polycyclic aromatic hydrocarbons sequestered in sediment: Microbial study and model prediction[J]. Environ Toxicol Chem, 2007, 26:878-883
|
[81]
|
Qi Y C, Chen W. Comparison of earthworm bioaccumulation between readily desorbable and desorption-resistant naphthalene: implications for biouptake routes[J]. Environ Sci Technol, 2010, 44:323-328
|
[82]
|
Lei L, Suidan M, Khodadoust A, et al. Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption[J]. Environ Sci Technol, 2004, 38:1786-1793
|
[83]
|
Lu X, Reible D D, Fleeger J W. Bioavailability of polycyclic aromatic hydrocarbons in field-contaminated Anacostia river (Washington, DC) sediment[J]. Environ Toxicol Chem, 2006, 25:2869-2874
|