土壤和沉积物中疏水性有机污染物的锁定及其环境效应

段林, 张承东, 陈威. 土壤和沉积物中疏水性有机污染物的锁定及其环境效应[J]. 环境化学, 2011, 30(1): 242-251.
引用本文: 段林, 张承东, 陈威. 土壤和沉积物中疏水性有机污染物的锁定及其环境效应[J]. 环境化学, 2011, 30(1): 242-251.
DUAN Lin, ZHANG Chengdong, CHEN Wei. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS IN SOIL/SEDIMENT AND ITS ENVIRONMENTAL IMPACT[J]. Environmental Chemistry, 2011, 30(1): 242-251.
Citation: DUAN Lin, ZHANG Chengdong, CHEN Wei. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS IN SOIL/SEDIMENT AND ITS ENVIRONMENTAL IMPACT[J]. Environmental Chemistry, 2011, 30(1): 242-251.

土壤和沉积物中疏水性有机污染物的锁定及其环境效应

  • 基金项目:

    科技部国际科技合作项目(2009DFA91910)

    国家自然科学基金(20407013,20577024,20637030,20977050)资助.

SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS IN SOIL/SEDIMENT AND ITS ENVIRONMENTAL IMPACT

  • Fund Project:
  • 摘要: 大量研究表明,吸附到土壤和沉积物中的疏水性有机物只有部分能够较容易地解吸出来,而残留的部分很难解吸.这种现象常被称为"解吸滞后","不可逆吸附",或者"锁定".锁定会导致受污染土壤和沉积物修复效率的降低;但与此同时,锁定也会降低受污染土壤和沉积物的环境风险.本文综述了土壤和沉积物中疏水性有机污染物锁定的典型热力学和动力学特征、以及锁定的形成机理,介绍了一个能够以简单参数准确量化污染物从土壤和沉积物中解吸行为的数学模型,并探讨了锁定对疏水性有机污染物迁移归宿、生物可利用性、以及污染场地生态风险的影响.
  • 加载中
  • [1] Brusseau M L, Rao P S C. Sorption nonideality during organic contaminant transport in porous media[J]. Crit Rev Environ Control, 1989, 19: 33-99
    [2] McCall P J, Agin G L. Desorption kinetics of picloram as affected by residence time in the soil[J]. Environ Toxicol Chem, 1985, 4: 37-44
    [3] Steinberg S M, Pignatello J J, Sawhney B L. Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores[J]. Environ Sci Technol, 1987, 21:1201-1208
    [4] Pereira W E, Rostad C E, Chiou C T, et al. Contamination of estuarine water, biota, and sediment by halogenated organic compounds: a field study[J]. Environ Sci Technol, 1988, 22: 772-778
    [5] Pignatello J J. Slowly reversible sorption of aliphatic halocarbons in soils. Ⅰ. Formation of residual fractions[J]. Environ Toxicol Chem, 1990a, 9: 1107-1115
    [6] Pignatello J J. Slowly reversible sorption of aliphatic halocarbons in soils. Ⅱ. Mechanistic aspects[J]. Environ Toxicol Chem, 1990b, 9: 1117-1126
    [7] Ball W P, Roberts P V. Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium[J]. Environ Sci Technol, 1991, 25: 1223-1236
    [8] Pavlostathis S G, Jaglal K. Desorptive behavior of trichloroethylene in contaminated soil[J]. Environ Sci Technol, 1991, 25: 274-279
    [9] McGroddy S E, Farrington J W. Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston harbor, Massachusetts[J]. Environ Sci Technol, 1995, 29:1542-1550
    [10] Gschwend P M, Wu S C. On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants[J]. Environ Sci Technol, 1985, 19: 90-96
    [11] Pignatello J J, Ferrandino F J, Huang L Q. Elution of aged and freshly added herbicides from a soil[J]. Environ Sci Technol, 1993, 27:1563-1571
    [12] Kan A T, Fu G, Tomson M B. Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction[J]. Environ Sci Technol, 1994, 28:859-867
    [13] Chen W, Kan A T, Tomson M B. Irreversible adsorption of chlorinated benzenes to natural sediments-implication for sediment quality criteria[J]. Environ Sci Technol, 2000, 34:385-392
    [14] 李晓军,李培军,蔺昕.土壤中难降解有机污染物锁定机理研究进展[J].应用生态学报,2007,18(7):1624-1630
    [15] 李久海,潘根兴.土壤中有机污染物的老化及其环境意义[J].土壤通报,2006,27(2):378-382
    [16] 赵青,李培军.有机污染物在土壤中老化行为的研究进展[J].生态学杂志,2008,27(3):476-479
    [17] 党志,于虹,黄伟林,等.土壤/沉积物吸附有机污染物机理研究的进展[J].化学通报,2001,2:81-85
    [18] 李俊国,孙红文.芘在土壤中的长期吸附和解吸行为[J].环境科学,2006,27(1):165-170
    [19] 张先明,潘波,刘文新,等.天然土壤中菲的解吸行为特征研究[J].环境科学,2007,28(2):272-277
    [20] 刘广良,戴树桂,钱芸.农药涕灭威在土壤中的不可逆吸附行为[J].环境科学学报,2000,20(5):597-602
    [21] 陈华林,陈英旭,王子健,等.中国南方河流和湖泊沉积物对菲的吸附特性[J].环境科学,2003,24(5):120-124
    [22] 梁重山,党志,刘丛强,等.菲在土壤/沉积物上的吸附-解吸过程及滞后现象的研究[J].土壤学报,2004,41(3):329-335
    [23] 冉勇,林峥,王锡莉,等.对二氯苯在泥炭上的吸附和解吸[J].科学通报, 2000,45(s1):2689-2694
    [24] Linz D G, Nakles D V. Environmentally acceptable endpoints in soil: Risk-based approach to contaminated site management based on availability of chemicals in soil[M]. Annapolis MD USA: American Academy of Environmental Engineers, 1997
    [25] Lipnick R L, Hermens J L M, Jones K C, et al. Persistent, Accumulative and Toxic Chemicals Ⅰ: Fate and Exposure[M]. Washington, DC, USA: ACS Symposium Series 772. American Chemical Society, 2001
    [26] Kan A T, Fu G, Hunter M, et al. Irreversible sorption of neutral hydrocarbons to sediments: experimental observations and model predictions[J]. Environ Sci Technol, 1998, 32:892-902
    [27] Chen W, Kan A T, Fu G, et al. Adsorption-desorption behaviors of hydrophobic organic compounds in sediments of Lake Charles, Louisiana, USA[J]. Environ Toxicol Chem, 1999, 18:1610-1616
    [28] Kan A T, Chen W, Tomson M B. Desorption kinetics of neutral hydrophobic organic compounds from field-contaminated sediment[J]. Environ Pollut, 2000, 108:81-89
    [29] Chen W, Kan A T, Fu G, et al. Factors affecting the release of hydrophobic organic contaminants from natural sediments[J]. Environ Toxicol Chem, 2000, 19:2401-2408
    [30] Yang W, Duan L, Zhang N, et al. Resistant desorption of hydrophobic organic contaminants in typical Chinese soils: Implication for long-term fate and soil quality standards[J]. Environ Toxcol Chem, 2008, 27:235-242
    [31] Duan L, Zhang N, Wang Y, et al. Release of hexachlorocyclohexanes from historically and freshly contaminated soils in China: Implications for fate and regulation[J]. Environ Pollut, 2008, 156:753-759
    [32] Yang W, Zhang J, Zhang C, et al. Sorption and resistant desorption of atrazine in typical Chinese soils[J]. J Environ Qual, 2009, 38:171-179
    [33] 罗晓丽,齐亚超,张承东,等.多环芳烃在中国两种典型土壤中的吸附和解吸行为研究[J].环境科学学报,2008,28(7):1375-1380
    [34] 张冬梅,陈蓓,王瑜,等.疏水性有机污染物在草甸土中的吸附和解吸行为[J].环境化学,2008,27(3):345-349
    [35] Pignatello J J, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Environ Sci Technol, 1996, 30:1-11
    [36] Luthy R G, Aiken G R, Brusseau M L, et al. Sequestration of hydrophobic organic contaminants by geosorbents[J]. Environ Sci Technol, 1997, 31:3341-3347
    [37] Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environ Sci Technol, 2000, 34:4259-4265
    [38] Chiou C T. Partition and adsorption of organic contaminants in environmental systems[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2002:100-105
    [39] Werth C J, McMillan S A, Castilla H J. Structural evaluation of slow desorbing sites in model and natural solids using temperature stepped desorption profiles. 1. Model development[J]. Environ Sci Technol, 2000, 34:2959-2965
    [40] Ahn S, Werner D, Karapanagioti H K, et al. Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon[J]. Environ Sci Technol, 2005, 39:6516-6526
    [41] Jonker M T O, Koelmans A A. Extraction of polycyclic aromatic hydrocarbons from soot and sediment: solvent evaluation and implications for sorption mechanism[J]. Environ Sci Technol, 2002, 36:4107-4113
    [42] Shor L M, Rockne K J, Taghon G L, et al. Desorption kinetics for field-aged polycyclic aromatic hydrocarbons from sediments[J]. Environ Sci Technol, 2003, 37:1535-1544
    [43] Li J, Werth C J. Slow desorption mechanisms of volatile organic chemical mixtures in soil and sediment micropores[J]. Environ Sci Technol, 2004, 38:440-448
    [44] Ran Y, Xing B, Rao P S C, et al. Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate[J]. Environ Sci Technol, 2004, 38:4340-4348
    [45] Carroll K M, Harkness M R, Bracco A A, et al. Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments[J]. Environ Sci Technol, 1994, 28:253-258
    [46] Weber W J Jr, Huang W. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions[J]. Environ Sci Technol, 1996, 30:881-888
    [47] LeBoeuf E J, Weber W J Jr. Macromolecular characteristics of natural organic matter. 2. Sorption and desorption behavior[J]. Environ Sci Technol, 2000, 34:3632-3640
    [48] Johnson M D, Keinath T M, Weber W J Jr. A distributed reactivity model for sorption by soils and sediments. 14. characterization and modeling of phenanthrene desorption rates[J]. Environ Sci Technol, 2001, 35:1688-1695
    [49] Xia G, Pignatello J J. Detailed sorption isotherms of polar and apolar compounds in a high-organic soil[J]. Environ Sci Technol, 2001, 35:84-94
    [50] Vieth W R. Diffusion in and through polymers[M]. Munich: Hanser Verlag, 1991
    [51] Chiou C T, Kile D E. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations[J]. Environ Sci Technol, 1998, 32:338-343
    [52] Chiou C T, Kile D E, Rutherford D W, et al. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: potential sources of the sorption nonlinearity[J]. Environ Sci Technol, 2000, 34:1254-1258
    [53] Xiao B, Yu Z, Huang W, Song J, et al. Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants[J]. Environ Sci Technol, 2004, 38:5842-5852
    [54] Cornelissen G, Gustafsson O. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates[J]. Environ Sci Technol, 2004, 38:148-155
    [55] Cornelissen G, Elmquist M, Groth I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environ Sci Technol, 2004, 38:3574-3580
    [56] Adamson A W. Physical Chemistry of Surface[M]. New York: J Wiley & Sons Inc, 1990
    [57] White J C, Kelsey J W, Hatzinger P B, et al. Factors affecting sequestration and bioavailability of phenanthrene in soils[J]. Environ Toxcol Chem, 1997, 16:2040-2045
    [58] Everett D H. Adsorption Hysteresis. The solid-gas interface[M]. Vol. 2, Flood E A (ed.), New York: Marcel Dekker Inc, 1967
    [59] Burgess C C V, Everett D H, Nuttal S. Adsorption hysteresis in porous materials[J]. Pure and Appl Chem, 1989, 61:1845-1852
    [60] White J C, Kelsey J W, Hatzinger P B, et al. Factors affecting sequestration and bioavailability of phenanthrene in soils[J]. Environ Toxcol Chem, 1997, 16:2040-2045
    [61] Weber W J Jr, Kim S H, Johnson M D. Distributed reactivity model for sorption by soils and sediments. 15. High-concentration co-contaminant effects on phenanthrene sorption and desorption[J]. Environ Sci Technol, 2002, 36:3625-3634
    [62] Sander M, Lu Y, Pignatello J J. Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion[J]. Environ Sci Technol, 2006, 40:170-178
    [63] Sander M, Pignatello J J. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter[J]. Environ Sci Technol, 2005, 39:7476-7484
    [64] Lu Y, Pignatello J J. Demonstration of the "conditioning effect" in soil organic matter in support of a pore deformation mechanism for sorption hysteresis[J]. Environ Sci Technol, 2002, 36:4553-4561
    [65] Braida W J, Pignatello J J, Lu Y, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environ Sci Technol, 2003, 37:409-417
    [66] Lu Y, Pignatello J J. History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter[J]. Environ Sci Technol, 2004, 38:5853-5862
    [67] Valsaraj K T, Thibodeaux L J, Reible D D. A quasi-steady-state pollutant flux methodology for determining sediment quality criteria[J]. Environ Toxicol Chem, 1997, 16:391-396
    [68] Stroo H F, Jensen R, Loehr R C, et al. Environmentally acceptable endpoints for PAHs at a manufactured gas plant site[J]. Environ Sci Technol, 2000, 34:3831-3836
    [69] Xing B, Pignatello J J, Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environ Sci Technol, 1996, 30:2432-2440
    [70] Gustafsson O, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability[J]. Environ Sci Technol, 1997, 31:203-209
    [71] Xia G, Ball W P. Adsorption-partitioning uptake of nine low-polarity organic chemicals on a natural sorbent[J]. Environ Sci Technol, 1999, 33:262-269
    [72] Accardi-Dey A, Gschwend P M. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments[J]. Environ Sci Technol, 2002, 36:21-29
    [73] Cornelissen G, Elmquist M, Groth I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environ Sci Technol, 2004, 38:3574-3580
    [74] Manes M. Activated carbon adsorption fundaments.//Encyclopedia of environmental analysis and remediation[M]. Meyers R A eds. New York: John Wiley & Sons, 1998:26-68
    [75] Chen W, Kan A T, Newell C J, et al. More realistic soil cleanup standards with dual-equilibrium desorption[J]. Gournd Water, 2002, 40:153-164
    [76] Chen W, Cong L, Hu H L, et al. Release of adsorbed polycyclic aromatic hydrocarbons under cosolvent treatment: Implications for availability and fate[J]. Environ Toxicol Chem, 2008, 27:112-118
    [77] Jensen P, Hansen H, Rasmussen J, et al. Sorption-controlled degradation kinetics of MCPA in soil[J]. Environ Sci Technol, 2004, 38:6662-6668
    [78] Gomez-Lahoz C, Ortega-Calvo J. Effect of slow desorption on the kinetics of biodegradation of polycyclic aromatic hydrocarbons[J]. Environ Sci Technol, 2005, 39:8776-8783
    [79] Manhart C S, Chaney R C. Modeling TPH desorption in unconsolidated dune sand during remediation using dual-equilibrium desorption (DED) model[J]. J ASTM Intern, 2007, 3:1-7
    [80] Beckles D M, Chen W, Hughes J B. Bioavailability of polycyclic aromatic hydrocarbons sequestered in sediment: Microbial study and model prediction[J]. Environ Toxicol Chem, 2007, 26:878-883
    [81] Qi Y C, Chen W. Comparison of earthworm bioaccumulation between readily desorbable and desorption-resistant naphthalene: implications for biouptake routes[J]. Environ Sci Technol, 2010, 44:323-328
    [82] Lei L, Suidan M, Khodadoust A, et al. Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption[J]. Environ Sci Technol, 2004, 38:1786-1793
    [83] Lu X, Reible D D, Fleeger J W. Bioavailability of polycyclic aromatic hydrocarbons in field-contaminated Anacostia river (Washington, DC) sediment[J]. Environ Toxicol Chem, 2006, 25:2869-2874
  • 加载中
计量
  • 文章访问数:  1491
  • HTML全文浏览数:  1340
  • PDF下载数:  383
  • 施引文献:  0
出版历程
  • 收稿日期:  2010-10-06
段林, 张承东, 陈威. 土壤和沉积物中疏水性有机污染物的锁定及其环境效应[J]. 环境化学, 2011, 30(1): 242-251.
引用本文: 段林, 张承东, 陈威. 土壤和沉积物中疏水性有机污染物的锁定及其环境效应[J]. 环境化学, 2011, 30(1): 242-251.
DUAN Lin, ZHANG Chengdong, CHEN Wei. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS IN SOIL/SEDIMENT AND ITS ENVIRONMENTAL IMPACT[J]. Environmental Chemistry, 2011, 30(1): 242-251.
Citation: DUAN Lin, ZHANG Chengdong, CHEN Wei. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS IN SOIL/SEDIMENT AND ITS ENVIRONMENTAL IMPACT[J]. Environmental Chemistry, 2011, 30(1): 242-251.

土壤和沉积物中疏水性有机污染物的锁定及其环境效应

  • 1. 南开大学环境科学与工程学院, 天津市城市生态环境修复与污染防治重点实验室, 教育部环境污染过程与基准重点实验室, 天津, 300071
基金项目:

科技部国际科技合作项目(2009DFA91910)

国家自然科学基金(20407013,20577024,20637030,20977050)资助.

摘要: 大量研究表明,吸附到土壤和沉积物中的疏水性有机物只有部分能够较容易地解吸出来,而残留的部分很难解吸.这种现象常被称为"解吸滞后","不可逆吸附",或者"锁定".锁定会导致受污染土壤和沉积物修复效率的降低;但与此同时,锁定也会降低受污染土壤和沉积物的环境风险.本文综述了土壤和沉积物中疏水性有机污染物锁定的典型热力学和动力学特征、以及锁定的形成机理,介绍了一个能够以简单参数准确量化污染物从土壤和沉积物中解吸行为的数学模型,并探讨了锁定对疏水性有机污染物迁移归宿、生物可利用性、以及污染场地生态风险的影响.

English Abstract

参考文献 (83)

返回顶部

目录

/

返回文章
返回