准好氧填埋场垃圾中重金属化学形态分布特征
CHEMICAL FRACTIONATION CHARACTERISTICS OF HEAVY METAL IN SEMI-AEROBIC LANDFILL
-
摘要: 通过模拟准好氧填埋场中试试验,对垃圾原样和经准好氧填埋消化8个月后不同空间位置固体样中重金属含量、化学形态分布和迁移性进行研究.结果表明,垃圾原样中Pb,Ni,Cr,Cu和Fe的含量分别为88mg·kg-1,52mg·kg-1,304.667mg·kg-1,29mg·kg-1和1632.67mg·kg-1.垃圾原样中Ni和Cu以残渣态所占比例最高,分别为60.26%和60.92%,Pb以有机物结合态所占比例最高,为54.92%,Cr以铁锰氧化物结合态所占比例最高,为57.44%,而Fe以铁锰氧化物结合态、有机物结合态、残渣态为主,所占比例相近,为31%—34%左右.垃圾经准好氧填埋消化8个月后,Pb,Ni的有机物结合态所占比例降低,可交换态、碳酸盐结合态或铁锰氧化物结合态所占比例增加;Cu,Fe残渣态所占比例降低,可交换态、碳酸盐结合态或有机物结合态所占比例增加;Cr铁锰氧化物结合态所占比例降低,碳酸盐态或残渣态所占比例增加,金属活性增大.垃圾中Fe,Ni,Pb的迁移能力较强,迁移能力依次为FeNiPbCrCu.Abstract: Through pilot-scale experiment of semi-aerobic landfill,the concentration,chemical fractionation and mobility of heavy metal's in MSW was studied.In the first sample and the samples in different spacial location of semi-aerobic landfill after the gabage had been degradated for eight months.The results showed that the concentration of Pb,Ni,Cr,Cu and Fe was 88 mg·kg-1,52 mg·kg-1,304.667 mg·kg-1,29 mg·kg-1and 1632.67 mg·kg-1,respectively.Ni and Cu in the first samples were predominately in residual fraction,60.26% and 60.92%,Pb in organic state-part of vulcanized fraction,54.92%,Cr in Fe-Mn oxide fraction,57.44%,and Fe in Fe-Mn oxide fraction,organic state-part of vulcanized fraction and residual fraction,31%—34%.MSW in semi-aerobic landfill for eight months,the precentage of Pb and Ni in organic state-part of vulcanized fraction decreased,exchangeable or carbonate fraction or Fe-Mn oxide fraction increased,the precentage of Pb and Ni residual fraction decreased,exchangeable or carbonate fraction or organic state-part of vulcanized fraction increased,Cr Fe-Mn oxide fraction decreased,carbonate fraction or residual fraction increased,and their activitives increased.Fe or Ni and Pb were identified as the more mobile element,and the order of mobility was FeNiPbCrCu.
-
Key words:
- semi-aerobic landfill /
- heavy metal /
- chemical fractionation /
- transfer
-
-
[1] 刘玉荣, 污染土壤中重金属的生物可利用性评估方法研究.中国科学院硕士学位论文, 2001
[2] Tessier A, Campbell P G C, Blsson M, Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical. Chemistry, 1979, 51(7):844—851
[3] Arunachalam J,Ernons H, Krasnodebska B et al.,Sequential Extraction Studies on Homogenized Forest Soil Samples.The Science of the Tatal Environment,1996,181(2):147—159
[4] 杨巧艳,刘丹,李启彬等,模拟准好氧填埋场渗滤液重金属变化特性研究.西南交通大学学报,2010,45(2):317—323
[5] 卢瑛,甘海华,张波等,深圳市城市绿地土壤中重金属的含量及化学形态分布.环境化学,2009,28(2):284—288
[6] 杨巧艳,查坤,垃圾填埋处理中微量金属元素迁移和转变特性分析.四川环境,2005,24(6):96—98
[7] Pohland F G, in: Proceeding of the Third International Landfill Symposium, Sardinia 91, Environmental Sanitary Engineering Centre. Cagliari, Italy, 1991,1445—1460
[8] Coston J A, Fuller C, Davis J D, Pb2+,Zn2+ Adsorption by a Natural Aluminum- and iron-bearing Surface Coating on an Aquifer Sand. Geochim Cosmochim Acta, 1995,59:3535—3547
[9] Mcgergor R G, Blowes D W, Jambor J L et al., Mobilization and Attenuation of Heavy Metals within a Nickel Mine Tailings Impoundment Near Sudbury, Ontario, Canada. Environmental Geology,1998,36(3—4):305—319 -

计量
- 文章访问数: 627
- HTML全文浏览数: 591
- PDF下载数: 469
- 施引文献: 0