[1]
|
Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Sicence, 2006, 311: 622-627
|
[2]
|
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles[J]. Environ Health Perspect, 2005, 113: 823-839
|
[3]
|
Oberdörster E. Manufactured nanomaterials(fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass[J]. Environ Health Perspect, 2004, 112: 1058-1062
|
[4]
|
laper R, Crago J, Barr J, et al. Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: changes in toxicity with functionalization[J]. Environmental Pollution, 2009, 157: 1152-1156
|
[5]
|
Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials(TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environ Sci Technol, 2009, 43: 9216-9222
|
[6]
|
Oberdörster E, Zhu S, Blickley T M, et al. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene(C60) on aquatic organisms[J]. Carbon, 2006: 1112-1120
|
[7]
|
Hyung H, Fortner J D, Hughes J B, et al. Natural organic matter stablilizes carbon nanotubes in the aqueous phase[J]. Environ Sci Technol, 2007, 41: 179-184
|
[8]
|
Lecoanet H, Bottero J Y, Wiesner M R. Laboratory assessment of the mobility of nanomaterials in porous media[J]. Environ Sci Technol, 2004, 38: 5164-5169
|
[9]
|
Tian Y, Gao B, Silvera-Batista C, et al. Transport of engineered nanoparticles in saturated porous media[J]. Environ Sci Technol, 2010, 12: 2371-2380
|
[10]
|
Hu X L, Liu J F, Zhou Q F, et al. Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: evaluated with medaka(Oryzias latipes) and negligible depletion solid-phase microextraction[J]. Chemosphere, 2010, 80: 693-700
|
[11]
|
Sun H, Zhang X, Niu Q, et al. Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles[J]. Water Air Soil Pollut, 2007, 178: 245-254
|
[12]
|
Hu X L, Chen Q Q, Jiang L, et al.Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in zebrafish[J]. Environmental Pollution, 2011, DOI: 10.1016/j.envpol.2011.02.011
|
[13]
|
Nowwack B, Bucheli T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150: 5-22
|
[14]
|
Karn B, Kuiken T, Otto M. Nanotechnology and in situ remediation: a review of the benefits and potential risks[J]. Environ Health Perspect, 2009, 117: 1823-1831
|
[15]
|
Zhu X S, Zhu L, Chen Y S, et al. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna[J]. Nanoparticles and Occupational Health, 2009, 11: 67-75
|
[16]
|
Zhu X S, Wang J X, Zhang X Z, et al. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish(Danio rerio)[J]. Nanotechnology, 2009, 20: 1-9
|
[17]
|
Johnston B D, Scown T M, Moger J, et al. Bioavailability of nanoscale metal oxides TiO2,CeO2, and ZnO to fish[J]. Environ Sci Technol, 2010, 44: 1144-1151
|
[18]
|
Pace H E, Lesher E K, Ranville J F, et al. Influence of stability on the acute toxicity of CdSe/ZnO nanocrystals to Daphnia magna[J]. Environ Toxicol Chem, 2010, 29: 1338-1344
|
[19]
|
Ferré M, Gajda-Schrants K, Kantiani L, et al. Ecotoxicity and analysis of nanomaterials in the aquatic environment[J]. Anal Bioanal Chem, 2009, 393: 81-95
|
[20]
|
Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoperticles in monovalent and divalent electrolyte solutions[J]. Journal of Colloid and Interface Science, 2007, 309: 126-134
|
[21]
|
Cumberland S A, Lead J R. Particle size distribution of silver nanoparticles at environmentally relevant conditions[J]. Journal of Chromatograghy A, 2009, 1216: 9099-9105
|
[22]
|
Keller A A, Wang H T, Zhou D X, et al. Stability and aggregation of metal oxide nanoparticels in natural aqueous matrices[J]. Environ Sci Technol, 2010, 44: 1962-1967
|
[23]
|
Lin D H, Liu N, Yang K, et al. Different stabilities of multiwalled carbon nanotubes in fresh surface water samples[J]. Environmental Pollution, 2010, 158: 1270-1274
|
[24]
|
Ma X, Bouchard D. Formation of aqueous suspensions of fullerenes[J]. Envrion Sci Technol, 2009, 43: 330-336
|
[25]
|
Chen K L, Elimelech M. Aggregation and deposition of fullerene(C60) nanoparticles[J]. Langmuir, 2006, 22: 10994-11001
|
[26]
|
Zhao C M, Wang W X. Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna[J]. Environ Sci Technol, 2010,44: 7699-7704
|
[27]
|
Li Q L, Xie B, Hwang Y S, et al. Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight[J]. Environ Sci Technol, 2009, 43: 3574-3579
|
[28]
|
Zhu X S, Chang Y, Chen Y S. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna[J]. Chemosphere, 2010, 78: 209-215
|
[29]
|
Lewinski N A, Zhu H G, Jo H J, et al. Quantification of water solubilized CdSe/ZnS quantum dots in Daphnia magna[J]. Environ Sci Technol, 2010, 44: 1841-1846
|
[30]
|
Tervonen K, Waissi G, Petersen E J, et al. Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna[J]. Environ Toxicol Chem, 2010, 29: 1072-1078
|
[31]
|
Petersen E J, Akkanen J, Kukkonen J V K, et al. Biological uptake and depuration of carbon nanotubes by Daphnia magna[J]. Envron Sci Technol, 2009, 43: 2969-2975
|
[32]
|
Tao X J, Fortner J D, Zhang B, et, al. Effects of aqueous stable fullerene nanocrystals(nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation[J]. Chemosphere, 2009, 77: 1482-1487
|
[33]
|
Fent K, Weisbrod C, Wirth-Heller A, et al. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish(Danio rerio) early life stages[J]. Aquatic Toxicity, 2010, 100: 218-228
|
[34]
|
Kashiwada S. Distribution of nanoparticles in the see-through medaka(Oryzias latipes)[J]. Environ. Health Perspect, 2006, 114: 1697-1702
|
[35]
|
Scown T M, Santos E M, Johnston B D, et al. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout[J]. Toxicological Science, 2010, 115(2): 521-534
|
[36]
|
Bouldin J L, Ingle T M, Sengupta A, et al. Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubia[J]. Environ Toxcicol Chem, 2008, 27: 1958-1963
|
[37]
|
Holbrook R D, Murphy K E, Morrow J B, et al. Trophic transfer of nanoparticles in a simplified invertebrate food web[J]. Nanotechnology, 2008, 3: 352-355
|
[38]
|
Zhu X S, Wang J X, Zhang X Z, et al. Trophic transfer of TiO2 nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain[J]. Chemosphere, 2010, 79: 928-933
|
[39]
|
Bai W, Zhang Z Y, Tian W J, et al. Toxicity of zinc oxide nanoparticles to Zebrafish embryo: a physicochemical study of toxicity mechanism[J]. J Nanopart Res, 2010, 12: 1645-1654
|
[40]
|
Bilberg K, Malte H, Wang T, et al. Silver nanoparticles and silver nitrate cause respiratory stress in eurasian perch(Perca fluviatilis)[J]. Aquatic Toxicity, 2010, 96: 159-165
|
[41]
|
Klaine S J, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment: behavior, fate bioavailability, and effects[J]. Environ Toxicol Chem, 2008, 27: 1825-1851
|
[42]
|
Henry T B, Menn F M, Fleming J T, et al. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression[J]. Environ Health Perspect, 2007, 115: 1059-1065
|
[43]
|
Saison C, Perreault F, Daigle J C, et al. Effects of core- shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem Ⅱ energy distribution) in the green alga, Chlamydomanas reinhardtii[J]. Aquatic Toxicity, 2010, 96: 109-114
|
[44]
|
Yang X Y, Edelmann R E, Oris J T, et al. Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo- induced toxicity, but cause long- term cellular damage in Daphnia magna[J]. Aquatic Toxicity, 2010, 100: 202-210
|
[45]
|
Canesi L, Fabbri R, Gallo G, et al. Biomarkers in mytilus galloprovincialis exposed to suspensions of selected nanoparticles(nano carbon black, C60 fullerene, nano-TiO2,nano-SiO2)[J]. Aquatic Toxicity, 2010, 100: 168-177
|
[46]
|
Hao L H, Wang Z Y, Xing B S. Effects of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp(Cyprinus carpio)[J]. Journal of Ennvironmental Science, 2009, 21: 1459-1466
|
[47]
|
Li H C, Zhou Q F, Wu Y, et al. Effects of waterborne nano-iron on medaka(Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology[J]. Ecotoxicology and Environmental Safety, 2009, 72: 684-692
|
[48]
|
Zhu X S, Zhu L, Li Y, et al. Developmental toxicity in zebrafish(Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates(nC60) and fullerol[J]. Environ Toxicol Chem, 2007, 26(5): 976-979
|
[49]
|
Choi J E, Kim S, Ahn J H, et al. Induction of oxidative stress and apoptosis by nanoparticles in the liver of adult zebrafish[J]. Aquatic Toxicity, 2010, 100: 151-159
|
[50]
|
Lee S W, Kim S M, Choi J. Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure[J]. Environmental Toxicology And Pharmacology, 2009, 28: 86-91
|
[51]
|
Lovern S B, Strickler J R, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions(titanium dioxide, nano-C60, and C60HxC70Hx)[J]. Environ Sci Technol, 2007, 41: 4465-4470
|
[52]
|
Li T, Albee B, Alemayehu M, et al. Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna[J]. Anal Bioanal Chem, 2010, 398: 689-700
|
[53]
|
Zhu X S, Chang Y, Chen Y S. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna[J]. Chemosphere, 2010, 78: 209-215
|
[54]
|
Wiench K, Wohlleben W, Hisgen V, et al. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna[J]. Chemosphere. 2009, 76: 1356-1365
|
[55]
|
Handy R D, Henry T B, Scown T M, et al. Manufactured nanoparticles: their uptake and effects on fish- a mechanistic analysis[J]. Ecotoxicology, 2008, 17: 396-409
|
[56]
|
Zhu X S, Zhu L, Lang Y P, et al. Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates[J]. Environ Toxicol Chem, 2008, 27: 1979-1985
|
[57]
|
Zhu S Q, Oberdörster E, Haasch M L. Toxicity of an engineered nanoparticle(fullerene, C60) in two aquatic species, Daphnia and Fathead minnow[J]. Marine Environ. Res, 2006, 62: S5-S9
|
[58]
|
Cheng J P, Flahaut E, Cheng S H. Effects of carbon nanotubes on developing zebrafish (Danio rerio) embryos[J]. Environ Toxicol Chem, 2007, 26(4): 708-716
|
[59]
|
Petit A N, Eullaffroy P, Debenest T, et al. Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii[J]. Aquatic Toxicity, 2010, 100: 187-193
|
[60]
|
Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407: 1461-1468
|
[61]
|
Franklin N M, Rogers N J, Apte S C, et al. Comparative toxicity of nanoparticles ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga(Pseudokirchneriella subcapitata): the importance of particle solubility[J]. Environ Sci Technol, 2007, 41: 8484-8490
|
[62]
|
Ringwood A H, McCarthy M, Bates T C, et al. The effects of silver nanoparticles on Oyster embryos[J]. Marine Environ Research, 2010, 69: S49-S51
|
[63]
|
Baun A, Särensen S N, Rasmussen R F, et al. Toxicity and bioaccumulation of xenobiotic organic compounds in the prescence of aqueous suspensions of aggregates of nano-C60 [J]. Aquatic Toxicity, 2008, 86: 379-387
|
[64]
|
Sun H, Zhang X, Zhang Z, et al. Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite[J]. Environmental Pollution, 2009, 157: 1165-1170
|
[65]
|
Kim K T, Klaine S J, Lin S, et al. Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna[J]. Environ Toxicol Chem, 2010, 29: 122-126
|
[66]
|
Kim K T, Edgington A J, Klaine S J, et al. Influence of multiwalled carbon nanotubes dispersed in naturedal organic matter on speciation and bioavailability of copper[J]. Environ Sci Technol, 2009,43: 8979-8984
|
[67]
|
Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J]. Environ Sci Technol, 2006, 40: 1855-1861
|
[68]
|
Hu X L, Liu J F, Mayer P, et al. Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene[J]. Enviorn Toxicol Chem, 2008, 27: 1868-1874
|
[69]
|
Roberts A, Mount A S, Seda B, et al. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna[J]. Environ Sci Technol,2007, 41: 3025-3029
|
[70]
|
Hartmann N B, Kammer F V, Hofmann T, et al. Algal testing of titanium dioxide nanoparticles-testing considerations, inhibitory effects and modificatios of cadmium bioavailability[J]. Toxicology, 2010, 269: 190-197
|
[71]
|
Yan X M, Zha J M, Shi B Y, et al. In vivo toxicity of nano-C60 aggregates complex with atrazine to aquatic organisms[J]. Chinese Science Bulletin, 2010, 55: 339-345
|