全氟化合物在碳纳米管上的吸附研究

周艳萍, 温蓓, 胡晓宇, 张淑贞. 全氟化合物在碳纳米管上的吸附研究[J]. 环境化学, 2011, 30(12): 2003-2008.
引用本文: 周艳萍, 温蓓, 胡晓宇, 张淑贞. 全氟化合物在碳纳米管上的吸附研究[J]. 环境化学, 2011, 30(12): 2003-2008.
ZHOU Yanping, WEN Bei, HU Xiaoyu, ZHANG Shuzhen. ADSORPTION OF PERFLUORINATED COMPOUNDS ON MULTIWALLED CARBON NANOTUBES[J]. Environmental Chemistry, 2011, 30(12): 2003-2008.
Citation: ZHOU Yanping, WEN Bei, HU Xiaoyu, ZHANG Shuzhen. ADSORPTION OF PERFLUORINATED COMPOUNDS ON MULTIWALLED CARBON NANOTUBES[J]. Environmental Chemistry, 2011, 30(12): 2003-2008.

全氟化合物在碳纳米管上的吸附研究

  • 基金项目:

    国家重点基础研究发展计划(973)项目(2011CB936001)

    国家自然科学基金项目(20737003)资助.

ADSORPTION OF PERFLUORINATED COMPOUNDS ON MULTIWALLED CARBON NANOTUBES

  • Fund Project: 国家重点基础研究发展计划(973)项目(2011CB936001) 国家自然科学基金项目(20737003)资助.
  • 摘要: 研究了3种全氟化合物:全氟辛烷磺酸盐 (PFOS)、全氟己烷磺酸盐 (PFHxS)、全氟辛酸(PFOA)在原碳纳米管(Pri-MWCNTs)和氧化型碳纳米管(O-MWCNTs)上的吸附行为.研究结果显示,3种全氟化合物在两种碳管上的吸附均呈明显的非线性;全氟化合物的等温吸附曲线均符合Freundlich 及Langmuir模型.模型拟合参数表明全氟化合物在原碳纳米管上的吸附量大于在氧化型碳纳米管上的吸附量.3种全氟化合物的吸附能力为PFOS > PFOA > PFHxS, 这与它们分子含CF2个数一致,说明亲脂性是全氟化合物在碳纳米管上吸附的重要机理之一.3种全氟化合物的吸附量随pH的增加而降低,表明吸附受静电作用的影响.当溶液中同时存在PFOS与PFOA时,二者的吸附都有所降低,说明二者在碳纳米管上有共同的吸附位点,吸附存在竞争关系.
  • 加载中
  • [1] 史亚利,潘媛媛,王杰明,等. 全氟化合物的环境问题[J].化学进展,2009,21(2/3): 369

    -376

    [2] Sinclair E, Kannan K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J]. Environmental Science & Technology, 2006, 40 (5): 1408-1414
    [3] Becker A M, Gerstmann S, Frank H. Perfluorooctane surfactants in waste waters, the major source of river pollution[J]. Chemosphere, 2008, 72 (1): 115-121
    [4] Senevirathna S, Tanaka S, Fujii S, et al. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers[J]. Chemosphere, 2010, 80 (6): 647-651
    [5] Yu Q, Zhang R, Deng S, et al. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study[J]. Water Research, 2009, 43 (4): 1150-1158
    [6] Yu Q, Deng S, Yu G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents[J]. Water Research, 2008, 42 (12): 3089-3097
    [7] Fagan S B, Santos E, Souza Filho A, et al. Ab initio study of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin adsorption on single wall carbon nanotubes[J]. Chemical Physics Letters, 2007, 437 (1/3): 79-82
    [8] Chen W, Duan L, Zhu D Q. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes[J]. Environmental Science & Technology, 2007, 41 (24): 8295-8300
    [9] Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J]. Environmental Science & Technology, 2006, 40 (6): 1855-1861
    [10] Lin D H, Xing B S. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups[J]. Environmental Science & Technology, 2008, 42 (19): 7254-7259
    [11] Hyung H, Kim J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42 (12): 4416-4421
    [12] Fujii S, Polprasert C, Tanaka S, et al. New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds-a review paper[J]. Journal of Water Supply Research & Technology-Aqua, 2007, 56(5): 313-326
    [13] Steinle-Darling E, Reinhard M. Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluorochemicals[J]. Environmental Science & Technology, 2008, 42(14): 5292-5297
    [14] Qu B C, Zhao H X, Zhou J T. Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant[J]. Chemosphere, 2010, 79(5): 555-560
    [15] Higgins C P, Luthy R G. Sorption of perfluorinated surfactants on sediments[J]. Environmental Science & Technology, 2006, 40 (23): 7251-7256
    [16] Chen G C, Shan X Q, Wang Y S, et al. Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(Ⅱ)[J]. Water Research, 2009, 43 (9): 2409-2418
    [17] Kissa E. Fluorinated Surfactants and Repellents (second edition)[M]. New York: Marcel Dekker, 2001: 1-615
  • 加载中
计量
  • 文章访问数:  1157
  • HTML全文浏览数:  1100
  • PDF下载数:  1438
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-05-13
周艳萍, 温蓓, 胡晓宇, 张淑贞. 全氟化合物在碳纳米管上的吸附研究[J]. 环境化学, 2011, 30(12): 2003-2008.
引用本文: 周艳萍, 温蓓, 胡晓宇, 张淑贞. 全氟化合物在碳纳米管上的吸附研究[J]. 环境化学, 2011, 30(12): 2003-2008.
ZHOU Yanping, WEN Bei, HU Xiaoyu, ZHANG Shuzhen. ADSORPTION OF PERFLUORINATED COMPOUNDS ON MULTIWALLED CARBON NANOTUBES[J]. Environmental Chemistry, 2011, 30(12): 2003-2008.
Citation: ZHOU Yanping, WEN Bei, HU Xiaoyu, ZHANG Shuzhen. ADSORPTION OF PERFLUORINATED COMPOUNDS ON MULTIWALLED CARBON NANOTUBES[J]. Environmental Chemistry, 2011, 30(12): 2003-2008.

全氟化合物在碳纳米管上的吸附研究

  • 1.  中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 2.  北京疾病预防控制中心, 北京, 100020
基金项目:

国家重点基础研究发展计划(973)项目(2011CB936001)

国家自然科学基金项目(20737003)资助.

摘要: 研究了3种全氟化合物:全氟辛烷磺酸盐 (PFOS)、全氟己烷磺酸盐 (PFHxS)、全氟辛酸(PFOA)在原碳纳米管(Pri-MWCNTs)和氧化型碳纳米管(O-MWCNTs)上的吸附行为.研究结果显示,3种全氟化合物在两种碳管上的吸附均呈明显的非线性;全氟化合物的等温吸附曲线均符合Freundlich 及Langmuir模型.模型拟合参数表明全氟化合物在原碳纳米管上的吸附量大于在氧化型碳纳米管上的吸附量.3种全氟化合物的吸附能力为PFOS > PFOA > PFHxS, 这与它们分子含CF2个数一致,说明亲脂性是全氟化合物在碳纳米管上吸附的重要机理之一.3种全氟化合物的吸附量随pH的增加而降低,表明吸附受静电作用的影响.当溶液中同时存在PFOS与PFOA时,二者的吸附都有所降低,说明二者在碳纳米管上有共同的吸附位点,吸附存在竞争关系.

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回