大气氮湿沉降对青山湖富营养化的影响

倪婉敏, 朱蕊, 张建英. 大气氮湿沉降对青山湖富营养化的影响[J]. 环境化学, 2012, 31(5): 631-635.
引用本文: 倪婉敏, 朱蕊, 张建英. 大气氮湿沉降对青山湖富营养化的影响[J]. 环境化学, 2012, 31(5): 631-635.
NI Wanmin, ZHU Rui, ZHANG Jianying. Wet deposition of atmospheric nitrogen and its eutrophic effect on Qingshan Lake[J]. Environmental Chemistry, 2012, 31(5): 631-635.
Citation: NI Wanmin, ZHU Rui, ZHANG Jianying. Wet deposition of atmospheric nitrogen and its eutrophic effect on Qingshan Lake[J]. Environmental Chemistry, 2012, 31(5): 631-635.

大气氮湿沉降对青山湖富营养化的影响

  • 基金项目:

    浙江省科技攻关项目(2007C23G2010234),国家自然科学基金项目(21177106)资助.

Wet deposition of atmospheric nitrogen and its eutrophic effect on Qingshan Lake

  • Fund Project:
  • 摘要: 针对大气湿沉降氮的区域通量问题,通过2008年春、夏季对临安青山湖区湿沉降中氮素化学形态的分析,揭示了大气氮湿沉降的时间分布特征,通过估算大气氮湿沉降的输入通量,研究湿沉降对湖区水体富营养化的贡献.结果表明,春季青山湖降水总氮浓度范围为(1.30±0.02)—(9.80±0.85)mg·L-1,其中铵态氮占总氮比例最高,为40.7%,硝态氮和有机氮的比例分别为33.5%和25.8%;雨水氮浓度随着降雨强度的增大呈显著下降趋势,铵态氮和硝态氮所占的比例随着降雨的进行会逐渐升高,而有机氮的比例却有不断降低的趋势;青山湖春季大气氮沉降负荷为6.64 kg·hm-2,雨水中平均的氮浓度为(4.86±0.65)mg·L-1,严重超过了水体富营养化0.2 mg·L-1的阈值,对青山湖水生生态系统造成潜在的威胁.
  • 加载中
  • [1] Kaiser J.The other global pollutant:nitrogen proves tough to curb [J]. Science,2001,294:1268-1269
    [2] Galloway J N.Acid deposition perspectives in time and space [J]. War Air Soil Pollut,1995,85:15-24
    [3] Zhu Z, Xiong Z, Xing G. Impacts of population growth and economic development on the nitrogen cycle in Asia [J]. Science in China (Series C, Life Sciences), 2005, 48: 729-737
    [4] Twonsend A R,Braswell B H,Holand E A,et al. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen [J].Ecological Applications,1996,6:804-814
    [5] Matson P A,McDowell W H,Townsend A R,et al. The globalization of N deposition:ecosystem consequences in tropical environments [J].Biogeochemistry, 1999, 46:67-83
    [6] Matson P A, Lohse K A, Hall S J. The globalization of nitrogen deposition:consequences for terrestrial ecosystems [J]. Ambio,2002, 31(2):113-119
    [7] Park S U, Lee Y H.Spatial distribution of wet deposition of nitrogen in South Korea[J].Atmospheric Environment,2002,36(4):619-628
    [8] Li S X,Cun D G,Guo Y J,et al.Mineral nitrogen introduced into soil by precipitation on Loess dryland [J]. Agricultural Research in the Arid Areas,1993, 11(Supplement):83-91
    [9] Liu X J,Margaret W,Ju X T,et al.NO and N2O fluxes from agricultural soils in Beijing area [J]. Progress in Natural Science,2004,14:489-494
    [10] Liu X J, Ju X T, Zhang Y, et al. Nitrogen deposition in agroecosystems in Beijing area [J]. Agriculture, Ecosystems and Environment, 2006, 113: 370-377
    [11] Antia N J,Harrison P J,Oliveira L.The role of dissolved organic nitrogen in phytoplankton nutrition,cell biology,and ecology [J].Phycologia,1991,30:1-89.
    [12] Jenkinson D S.An introduction to the global nitrogen cycles [J]. Soil Use Manage, 1990, 6:56-61
    [13] Skeffington R A.Accelerated nitrogen inputs:A new problem or a new perspective[J].Plant and Soil,1990,128:1-11
    [14] Cai G X,Zhu Z L.An assessment of N loss from agricultural fields to the environment in China[J].Nutrition Cycle in Agro-ecosysment,2000,57:67-73
    [15] Cai G X,Peng H,Wu Y W,et al.Fate of urea nitrogen applied to rape grown an aired soil and efficiency of urea in raising rape yield [J]. Pedosphere,1995,5(2):107-114
    [16] MacDonald J A,Dise N B,Matzner E,et al.Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests[J].Global Change Biol,2002,8:1028-1033
    [17] Cornefla S E,Jickellsa T D,Capeb J N,et al.Organic nitrogen deposition on land and coastal environments:A review of methods and data[J].Atmos Environ,2003,37:2173-191
    [18] 陈能汪,洪华生,张珞平.九龙江流域大气氮湿沉降研究[J].环境科学,2008,29(1):38-46
    [19] Sehindler D W.Effects of acid rain on freshwater ecosysterns [J].Science,1988,239:149-151
    [20] Krusche A V, Camargo P B, Cerri C E, et al. Acid rain and nitrogen deposition in a subtropical watershed (Piracieaba):ecosystem consequences[J].Environmental Pollution,2003,121:389-399
    [21] Tarnay L,Gertler A W,Blank R R,et al.Preliminary measurements of summer nitric acid and ammonia concentrations in the Lake Tahoe Basin air-shed:implications for dry deposition of atmospheric nitrogen[J].Environmental Pollution,2001,113:145-153
    [22] Gorham E.Acid deposition and its ecological effects:a brief history of research[J].Environmental Science& Policy,1998,1 (3):153-166
    [23] Vitousek P M,Aber J D,Howarth R W,et al.Human alteration of the global nitrogen cycle:sources and consequences[J].Ecological Applications,1997,7(3):737-750
  • 加载中
计量
  • 文章访问数:  623
  • HTML全文浏览数:  596
  • PDF下载数:  426
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-09-21

大气氮湿沉降对青山湖富营养化的影响

  • 1.  浙江大学环境与资源学院环境科学研究所, 杭州, 310058;
  • 2.  浙江省有机污染过程与控制重点实验室, 杭州, 310058
基金项目:

浙江省科技攻关项目(2007C23G2010234),国家自然科学基金项目(21177106)资助.

摘要: 针对大气湿沉降氮的区域通量问题,通过2008年春、夏季对临安青山湖区湿沉降中氮素化学形态的分析,揭示了大气氮湿沉降的时间分布特征,通过估算大气氮湿沉降的输入通量,研究湿沉降对湖区水体富营养化的贡献.结果表明,春季青山湖降水总氮浓度范围为(1.30±0.02)—(9.80±0.85)mg·L-1,其中铵态氮占总氮比例最高,为40.7%,硝态氮和有机氮的比例分别为33.5%和25.8%;雨水氮浓度随着降雨强度的增大呈显著下降趋势,铵态氮和硝态氮所占的比例随着降雨的进行会逐渐升高,而有机氮的比例却有不断降低的趋势;青山湖春季大气氮沉降负荷为6.64 kg·hm-2,雨水中平均的氮浓度为(4.86±0.65)mg·L-1,严重超过了水体富营养化0.2 mg·L-1的阈值,对青山湖水生生态系统造成潜在的威胁.

English Abstract

参考文献 (23)

目录

/

返回文章
返回