[1]
|
陈颖敏,李静,张学谦. 镍/铁双金属体系对多氯联苯的催化脱氯降解[J]. 华北电力大学学报, 2008, 35(4): 62-65
|
[2]
|
Lee C, Huffman G L. Innovative thermal destruction technologies[J]. Environmental Progress, 1989, 8(3): 190-199
|
[3]
|
Miyoshi K, Nishio T, Yasuhara A, et al. Dechlorination of hexachlorobiphenyl by using potassium-sodium alloy[J]. Chemosphere, 2000, 41(6): 819-824
|
[4]
|
Liu X, Zhao W. Microwave-assisted base-catalyzed decomposition process for the degradation of polychlorinated biphenyl. 2010 International Conference on Eletrical and Control Engineering. 2010: 4713-4716
|
[5]
|
Noma Y, Mitsuhara Y, Matsuyama K, et al. Pathways and products of the degradation of PCBs by the sodium dispersion method[J]. Chemosphere, 2007, 68(5): 871-879
|
[6]
|
Hwa K, Lang Q, Wai C M. Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water[J]. Environmental Science & Technology, 2000, 34(13): 2792-2798
|
[7]
|
Hutzinger O, Safe S, Zitko V. Photochemical degradation of chloro-biphenyls (PCBs)[J]. Environmental Health Perspectives, 1972, 1: 15-20
|
[8]
|
Weber R, Yoshida S, Miwa K. PCB destruction in subcritical and supercritical water evaluation of PCDF formation and initial steps of degradation mechanisms[J]. Environmental Science & Technology, 2002, 36(8): 1839-1844
|
[9]
|
Singh R, Khandal R, Singh G. Effect of gamma radiation on destruction of toxic polychlorinated biphenyls (PCBs) in hydraulic oils[J]. Journal of Applied Sciences and Environmental Management, 2007, 11(4): 143-146
|
[10]
|
Zhang Q, Saito F, Ikoma T, et al. Effects of quartz addition on the mechanochemical dechlorination of chlorobiphenyl by using CaO[J]. Environmental Science & Technology, 2001, 35(24): 4933-4935
|
[11]
|
Singer A, Gilbert E, Luepromchai E, et al. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria[J]. Applied Microbiology and Biotechnology, 2000, 54(6): 838-843
|
[12]
|
Collings A, Gwan P, Pintos A P S. Soil remediation using high-power ultrasonics[J]. Separation Science and Technology, 2007, 42(7): 1565-1574
|
[13]
|
Muthukrishnan A, Sangaranarayanan M, Boyarskiy V, et al. Regioselective electrochemical reduction of 2,4-dichlorobiphenyl-Distinct standard reduction potentials for carbon-chlorine bonds using convolution potential sweep voltammetry[J]. Chemical Physics Letters, 2010, 490(4-6): 148-153
|
[14]
|
Quiroga J, Riaza A, Manzano M. Chemical degradation of PCB in the contaminated soils slurry: Direct Fenton oxidation and desorption combined with the photo-Fenton process[J]. Journal of Environmental Science and Health, Part A, 2009, 44(11): 1120-1126
|
[15]
|
Hu Z, Saman W R G, Navarro R R, et al. Removal of PCDD/Fs and PCBs from sediment by oxygen free pyrolysis[J]. Journal of Environmental Sciences, 2006, 18(5): 989-994
|
[16]
|
段志婕, 吴德礼, 马鲁铭. 零价金属还原技术处理氯代有机物的研究进展[J]. 环境科学与管理, 2007, 32(6): 79-83
|
[17]
|
Wang C B, Zhang W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2154-2156
|
[18]
|
何娜, 李培军, 范淑秀, 等. 零价金属降解多氯联苯 (PCBs)[J]. 生态学杂志, 2007, 26(5): 749-753
|
[19]
|
Ukisu Y, Iimura S, Uchida R. Catalytic dechlorination of polychlorinated biphenyls with carbon-supported noble metal catalysts under mild conditions[J]. Chemosphere, 1996, 33(8): 1523-1530
|
[20]
|
赵毅. 多氯联苯催化转移氢化脱氯的研究[J]. 环境化学, 1994, 13(4): 328-331
|
[21]
|
Varanasi P, Fullana A, Sidhu S. Remediation of PCB contaminated soils using iron nano-particles[J]. Chemosphere, 2007, 66(6): 1031-1038
|
[22]
|
Choi H M, Veriansyah B, Kim J, et al. Recycling of transformer oil contaminated by polychlorinated biphenyls (PCBs) using catalytic hydrodechlorination[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(5): 494-501
|
[23]
|
Ukisu Y, Miyadera T. Hydrogen-transfer hydrodehalogenation of aromatic halides with alcohols in the presence of noble metal catalysts[J]. Journal of Molecular Catalysis A: Chemical, 1997, 125(2-3): 135-142
|
[24]
|
Bond G C, Tahir S F. Vanadium oxide monolayer catalysts preparation, characterization and catalytic activity[J]. Applied Catalysis, 1991, 71(1): 1-31
|
[25]
|
Sajiki H, Kume A, Hattori K, et al. Complete and truly catalytic degradation method of PCBs using Pd/C-Et3N system under ambient pressure and temperature[J]. Tetrahedron Letters, 2002, 43(40): 7251-7254
|
[26]
|
Kume A, Monguchi Y, Hattori K, et al. Pd/C-catalyzed practical degradation of PCBs at room temperature[J]. Applied Catalysis B: Environmental, 2008, 81(3-4): 274-282
|
[27]
|
Nyer E K, Vance D B. Nano scale iron for dehalogenation[J]. Ground Water Monitoring & Remediation, 2001, 21(2): 41-46
|
[28]
|
He N, Li P, Zhou Y, et al. Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1)[J]. Chemosphere, 2009, 76(11): 1491-1497
|
[29]
|
DeVor R, Carvalho-Knighton K, Aitken B, et al. Mechanism of the degradation of individual PCB congeners using mechanically alloyed Mg/Pd in methanol[J]. Chemosphere, 2009, 76(6): 761-766
|
[30]
|
Agarwal S, Al-Abed S R, Dionysiou D D. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs[J]. Environmental science & technology, 2007, 41(10): 3722-3727
|
[31]
|
DeVor R, Carvalho-Knighton K, Aitken B, et al. Dechlorination comparison of mono-substituted PCBs with Mg/Pd in different solvent systems[J]. Chemosphere, 2008, 73(6): 896-900
|
[32]
|
LaPierre R B, Guczi L, Kranich W L, et al. Hydrodechlorination of polychlorinated biphenyl[J]. Journal of Catalysis, 1978, 52(2): 230-238
|
[33]
|
Murena F, Schioppa E. Kinetic analysis of catalytic hydrodechlorination process of polychlorinated biphenyls (PCBs)[J]. Applied Catalysis B: Environmental, 2000, 27(4): 257-267
|
[34]
|
Mitoma Y, Tasaka N, Takase M, et al. Calcium-promoted catalytic degradation of PCDDs, PCDFs, and coplanar PCBs under a mild wet process[J]. Environmental Science & Technology, 2006, 40(6): 1849-1854
|
[35]
|
Mitoma Y, Egashira N, Simion C. Highly effective degradation of polychlorinated biphenyls in soil mediated by a Ca/Rh bicatalytic system[J]. Chemosphere, 2009, 74(7): 968-973
|
[36]
|
Grittini C, Malcomson M, Fernando Q, et al. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system[J]. Environmental Science & Technology, 1995, 29(11): 2898-2900
|
[37]
|
Yang B, Deng S, Yu G, et al. Bimetallic Pd/Al particles for highly efficient hydrodechlorination of 2-chlorobiphenyl in acidic aqueous solution[J]. Journal of Hazardous Materials, 2011,189:76-83
|
[38]
|
陈少瑾, 梁贺升. 纳米Co/Fe脱氯3,3',4,4'-四氯联苯 (BZ# 77)[J]. 环境化学, 2008, 27(6): 770-774
|
[39]
|
Subbanna P, Greene H, Desai F. Catalytic oxidation of polychlorinated biphenyls in a monolithic reactor system[J]. Environmental Science & Technology, 1988, 22(5): 557-561
|
[40]
|
Krishnamoorthy S, Rivas J A, Amiridis M D. Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides[J]. Journal of Catalysis, 2000, 193(2): 264-272
|
[41]
|
Tanaka Y, Zhang Q, Saito F, et al. Dependence of mechanochemically induced decomposition of mono-chlorobiphenyl on the occurrence of radicals[J]. Chemosphere, 2005, 60(7): 939-943
|
[42]
|
Weber R, Sakurai T. Low temperature decomposition of PCB by TiO2-Based V2O5/WO3 catalyst: evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics[J]. Applied Catalysis B: Environmental, 2001, 34(2): 113-127
|