酚类化合物在焦化废水处理过程中的降解与转移

刘显清, 李国保, 吴海珍, 张万辉, 关清卿, 冯春华, 吴超飞, 胡芸, 韦朝海. 酚类化合物在焦化废水处理过程中的降解与转移[J]. 环境化学, 2012, 31(10): 1487-1493.
引用本文: 刘显清, 李国保, 吴海珍, 张万辉, 关清卿, 冯春华, 吴超飞, 胡芸, 韦朝海. 酚类化合物在焦化废水处理过程中的降解与转移[J]. 环境化学, 2012, 31(10): 1487-1493.
LIU Xianqing, LI Guobao, WU Haizhen, ZHANG Wanhui, GUAN Qingqing, FENG Chunhua, WU Chaofei, HU Yun, WEI Chaohai. The degradation and transfer of phenolic compounds during the treatment processes of coking wastewater[J]. Environmental Chemistry, 2012, 31(10): 1487-1493.
Citation: LIU Xianqing, LI Guobao, WU Haizhen, ZHANG Wanhui, GUAN Qingqing, FENG Chunhua, WU Chaofei, HU Yun, WEI Chaohai. The degradation and transfer of phenolic compounds during the treatment processes of coking wastewater[J]. Environmental Chemistry, 2012, 31(10): 1487-1493.

酚类化合物在焦化废水处理过程中的降解与转移

  • 基金项目:

    国家自然科学基金重点项目(21037001)

    "十一五"国家科技支撑计划重点项目(2008BAC32B06-1)

    国家高技术研究发展计划项目(2009AA06Z319)

    广东省科技计划项目(2009B020311001)资助.

The degradation and transfer of phenolic compounds during the treatment processes of coking wastewater

  • Fund Project:
  • 摘要: 研究了4种烷基酚、7种氯酚和2种硝基酚物质在广东韶关钢铁集团焦化废水处理站的浓度演变与转移.针对设计处理量为2000 m3·d-1,生物处理采用A/O1/O2工艺,已经稳定运行5年的实际废水处理工程,同一时间分别采集水样、气样与综合排泥样若干批次,采用GC/MS方法分析酚类物质的浓度.研究结果表明,焦化废水中酚类物质在原水与各个处理工段中均存在成分与浓度的特征分布,烷基酚类物质浓度高但容易通过生物降解去除,氯酚和硝基酚的去除率略低,经生物处理的出水酚类物质浓度均低于5 μg·L-1,达到了有关排放标准的要求;所有酚类物质在废水处理过程中存在气相转移的现象,转移污染物浓度分布差异显著,取决于废水本底浓度与该物质的化学性质;污泥样品能够高倍数富集氯酚类物质,在处理与处置工艺的选择方面需要防止扩散.酚类化合物在焦化废水处理过程中的浓度削减主要是生物阶段,气相转移与固相转移可能构成环境风险,未来的水处理工程需要考虑二次污染的消除问题.
  • 加载中
  • [1] 任源,韦朝海,吴超飞,等. 焦化废水水质组成及其环境学与生物学特性分析[J].环境科学学报, 2007,27(7):1094-1100
    [2] Sarfaraz S, Thomas S, Tewari U K, et al. Anoxic treatment of phenolic wastewater in sequencing batch reactor [J]. Water Research, 2004, 38(4): 965-971
    [3] Ramos A F, Gomez M A, Hontoria E, et al. Biological nitrogen and phenol removal from saline industrial wastewater by submerged fixed-film reactor [J]. Journal of Hazardous Materials, 2007, 142(1/2): 175-183
    [4] 韦朝海, 贺明和, 吴超飞,等. 生物三相流化床A/O2组合工艺在焦化废水处理中的工程应用 [J]. 环境科学学报,2007, 27(7): 1107-1112
    [5] 张伟, 韦朝海, 彭平安,等. A/O/O生物流化床处理焦化废水中酚类组成及降解特性分析[J]. 环境工程学报, 2010, 4(2): 253-238
    [6] Gavalas G R. Coal Pyrolysis. New York: Elsevier, 1982,1139
    [7] Marianna C. Determination of selected organic pollutants in ground water—A method of analysis [J]. Fresenius Environmental Bulletin, 2002, 11(2): 91-97
    [8] Keith C L, Bridges R L, Fina L R, et al. Anaerobic decomposition of benzoic-acid during methane fermentation.4. De-Aromatization of Ring and volatile fatty-acids formed on ring rupture [J]. Archives of Microbiology, 1978, 118(2): 173-176
    [9] Fina, L R, Bridges R L, Coblentz T H, et al. Anaerobic decomposition of benzoic-acid during methane fermentation. 3. fate of carbon four and identification of propanoic acid [J]. Archives of Microbiology, 1978, 118(2): 169-172
    [10] Heider J, Fuchs G. Microbial anaerobic aromatic metabolism [J]. Anaerobe, 1997, 3(1): 1-22
    [11] Madsen T, Aamand J. Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture [J]. Applied and Environmental Microbiology, 1992, 58(2): 557-561
    [12] Rudolphi A, Tschech A, Fuchs G. Anaerobic degradation of cresols by denitrifying bacteria [J]. Archives of Microbiology, 1991, 155(3): 238-248
    [13] Hopper D J, Bossert I D, Rhodes-Roberts M E. P-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of P-Cresol [J]. Journal of Bacteriology, 1991, 173(3): 1298-1301
    [14] Melo J S, Kholi S, Patwardhan A W, et al. Effect of oxygen transfer limitations in phenol biodegradation [J]. Process Biochemistry, 2005, 40(2): 625-628
    [15] Pham T T, Proulx S. PCBs and PAHs in the Montreal Urban Community (Quebec, Canada) wastewater treatment plant and in the effluent plume in the St Lawrence River [J]. Water Research, 1997, 31(8): 1887-1896
    [16] Byrns G. The fate of xenobiotic organic compounds in wastewater treatment plants [J].Water Research, 2001, 35(10): 2523-2533
    [17] Hamoda M F. Air pollutants emissions from waste treatment and disposal facilities [J]. Journal of Environmental Science and Health, 2006, A41: 77-85
    [18] Cheng W H, Hsu S K, Chou M S. Volatile organic compound emissions from wastewater treatment plants in Taiwan: Legal regulations and costs of control [J]. Journal of Environmental Management, 2008, 88(4): 1485-1494
    [19] Webber M D, Lesage S. Organic contaminants in Canadian municipal sludge [J]. Waste Manage Res, 1989, (7): 63-82
    [20] Jacobs L W, O'Connor G A, Overcash M A, et al. Effects of trace organics in sewage sludges on soil-plant systems and assessing their risk to humans//Page A L, Logan T J, Ryan J A(eds). Land Application of sludge Food Chain Implication[M]. Chelsea: Lewis Publishers Inc, 1987. 101-143
    [21] Bright D A, Healey N. Contaminant risks from biosolids land application: Contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia [J]. Environmental Pollution, 2003, 126(1): 39-49
    [22] Ju J H, Lee I S, Sim W J, et al. Analysis and evaluation of chlorinated persistent organic compounds and PAHs in sludge in Korea [J]. Chemosphere, 2009, 74(3): 441-447
    [23] Hoekstra E J, De Weerd H, Deleer E W B, et al. Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas Fir forest [J]. Environmental Science & Technology, 1999, 33(15): 2543-2549
    [24] Öberg L G, Rappe C. Biological formation of PCDD/Fs from chlorophenols [J]. Chemosphere, 1992: 2543-2549
  • 加载中
计量
  • 文章访问数:  1028
  • HTML全文浏览数:  979
  • PDF下载数:  909
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-20
刘显清, 李国保, 吴海珍, 张万辉, 关清卿, 冯春华, 吴超飞, 胡芸, 韦朝海. 酚类化合物在焦化废水处理过程中的降解与转移[J]. 环境化学, 2012, 31(10): 1487-1493.
引用本文: 刘显清, 李国保, 吴海珍, 张万辉, 关清卿, 冯春华, 吴超飞, 胡芸, 韦朝海. 酚类化合物在焦化废水处理过程中的降解与转移[J]. 环境化学, 2012, 31(10): 1487-1493.
LIU Xianqing, LI Guobao, WU Haizhen, ZHANG Wanhui, GUAN Qingqing, FENG Chunhua, WU Chaofei, HU Yun, WEI Chaohai. The degradation and transfer of phenolic compounds during the treatment processes of coking wastewater[J]. Environmental Chemistry, 2012, 31(10): 1487-1493.
Citation: LIU Xianqing, LI Guobao, WU Haizhen, ZHANG Wanhui, GUAN Qingqing, FENG Chunhua, WU Chaofei, HU Yun, WEI Chaohai. The degradation and transfer of phenolic compounds during the treatment processes of coking wastewater[J]. Environmental Chemistry, 2012, 31(10): 1487-1493.

酚类化合物在焦化废水处理过程中的降解与转移

  • 1.  广东省韶关钢铁集团有限公司焦化厂,韶关,512123;
  • 2.  华南理工大学生物科学与工程学院, 广州, 510006;
  • 3.  中国科学院广州地球化学研究所珠江三角洲环境污染与控制研究中心, 广州, 510640;
  • 4.  华南理工大学环境科学与工程学院,工业聚集区污染控制与生态修复教育部重点实验室, 污染控制与生态修复广东省普通高等学校重点实验室, 广州, 510006
基金项目:

国家自然科学基金重点项目(21037001)

"十一五"国家科技支撑计划重点项目(2008BAC32B06-1)

国家高技术研究发展计划项目(2009AA06Z319)

广东省科技计划项目(2009B020311001)资助.

摘要: 研究了4种烷基酚、7种氯酚和2种硝基酚物质在广东韶关钢铁集团焦化废水处理站的浓度演变与转移.针对设计处理量为2000 m3·d-1,生物处理采用A/O1/O2工艺,已经稳定运行5年的实际废水处理工程,同一时间分别采集水样、气样与综合排泥样若干批次,采用GC/MS方法分析酚类物质的浓度.研究结果表明,焦化废水中酚类物质在原水与各个处理工段中均存在成分与浓度的特征分布,烷基酚类物质浓度高但容易通过生物降解去除,氯酚和硝基酚的去除率略低,经生物处理的出水酚类物质浓度均低于5 μg·L-1,达到了有关排放标准的要求;所有酚类物质在废水处理过程中存在气相转移的现象,转移污染物浓度分布差异显著,取决于废水本底浓度与该物质的化学性质;污泥样品能够高倍数富集氯酚类物质,在处理与处置工艺的选择方面需要防止扩散.酚类化合物在焦化废水处理过程中的浓度削减主要是生物阶段,气相转移与固相转移可能构成环境风险,未来的水处理工程需要考虑二次污染的消除问题.

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回