响应面法在催化湿式氧化降解异佛尔酮中的应用

闫晓淼, 李先如, 卫皇曌, 何松波, 余丽, 孙承林. 响应面法在催化湿式氧化降解异佛尔酮中的应用[J]. 环境化学, 2012, 31(12): 1865-1873.
引用本文: 闫晓淼, 李先如, 卫皇曌, 何松波, 余丽, 孙承林. 响应面法在催化湿式氧化降解异佛尔酮中的应用[J]. 环境化学, 2012, 31(12): 1865-1873.
YAN Xiaomiao, LI Xianru, WEI Huangzhao, HE Songbo, YU Li, SUN Chenglin. Application of response surface method in the degradation of isophorone by catalytic wet air oxidation[J]. Environmental Chemistry, 2012, 31(12): 1865-1873.
Citation: YAN Xiaomiao, LI Xianru, WEI Huangzhao, HE Songbo, YU Li, SUN Chenglin. Application of response surface method in the degradation of isophorone by catalytic wet air oxidation[J]. Environmental Chemistry, 2012, 31(12): 1865-1873.

响应面法在催化湿式氧化降解异佛尔酮中的应用

  • 基金项目:

    国家高科技研究发展计划(863)项目(2009AA063903)

    青年基金-博士科研探索课题(S2010144)资助.

Application of response surface method in the degradation of isophorone by catalytic wet air oxidation

  • Fund Project:
  • 摘要: 以Ru/TiZrO2为催化剂,采用催化湿式氧化法降解异佛尔酮废水,选择反应温度、氧气分压、反应时间、催化剂用量、初始pH为影响因素,以TOC去除率为响应值,采用响应面法研究影响因素及其交互作用对响应值的影响,建立二次多项式回归方程模型,并采用后退回归法进行模型精简.结果表明,反应时间和反应温度及其交互作用对TOC去除率影响极显著(P≤0.01);反应时间的二次项对TOC去除率影响显著(P≤0.05).随着反应温度的升高和反应时间的延长,TOC去除率逐渐提高.最后对模型进行验证,实验值与预测值具有很好的一致性,说明模型具有可靠的预测性,将该模型应用到催化湿式氧化中合理可行.质谱和离子色谱检测到异佛尔酮的降解产物主要为有机酮与小分子羧酸,由此提出对反应机理和降解途径的假设.
  • [1]
    [2] Paganelli S, Battois F, Marcjetti M, et al. Rhodium catalyzed hydroformylation of β-isophorone: an unexpected result[J]. J Mol Catal A Chem, 2006, 246(1/2):195-199
    [3] Halligudi S B, Kalaraj N K, Desjpamde S S, et al. Kinetics of oxidation of β-isophorone to keto-isophorone catalyzed by manganese Schiff base complex using molecular oxygen[J]. J Mol Catal A Chem, 2000, 157(1/2):9-14
    [4] Mao J Y, Li N, Li H R, et al. Novel Schiff base complexes as catalysts in aerobic selective oxidation of beta-isophorone[J].J Mol Catal A Chem, 2006, 258(1/2):178-184
    [5] Fortuny A, Bengoa C, Font J, et al. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol [J]. Journal of Hazardous Materials, 1999, B 64(2):181-193
    [6] Hamoudi S, Sayari A, Belkacemi K, et al. Catalytic wet oxidation of phenol over PtxAg1-xMnO2/CeO2 catalysts[J]. Catalysis Today, 2000, 62(4): 379-388
    [7] Liu W M, Hu Y Q, Tu S T. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent[J]. Journal of Hazardous Materials, 2010, 179(1/3): 545-551
    [8] Zhao S, Wang X H, Huo M X. Catalytic wet air oxidation of phenol with air and micellar molybdoyanadophosphoric polyoxometalates under room condition[J]. Applied Catalysis B-Environmental, 2010, 97(1/2): 127-134
    [9] Grosjean N, Descorme C, Besson M. Catalytic wet air oxidation of N,N-dimethylformamide aqueous solutions: Deactivation of TiO2 and ZrO2-supported noble metal catalysts[J]. Applied Catalysis B-Environmental, 2010, 97(1/2): 276-283
    [10] Kim K, Ihm S. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review [J]. Journal of Hazardous Materials, 2011, 186 (1):16-34
    [11] Cybulski A. Catalytic wet air oxidation: Are monolithic catalysts and reactors feasible? [J]. Industrial & Engineering Chemistry Research, 2007, 46 (12):4007-4033
    [12] Bhargava S K, Tardio J, Prasad J, et al. Wet oxidation and catalytic wet oxidation [J]. Industrial & Engineering Chemistry Research, 2006, 45(4): 1221-1258
    [13] Ahmad A L, Wong S S, Teng T T, et al. Optimization of coagulation-flocculation process for pulp and paper mill effluent by response surface methodological analysis [J]. Journal of Hazardous Materials, 2007, 145 (1/2):162-168
    [14] Wu D, Li Y, Shi Y, et al. Effects of the calcination conditions on the mechanical properties of a PCoMo/Al2O3 hydrotreating catalyst [J]. Chemical Engineering Science, 2002, 57 (17):3495-3504
    [15] Lundstedt T, Seifert E, Abramo L, et al. Experimental design and optimization[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 42 (1/2):3-40
    [16] Peixoto J L. A property of well-formulated polynomial regression models [J]. The American Statistician, 1990, 44 (1):26-30
    [17] Nelder J A. The selection of terms in response-surface models-How strong is the weak-heredity principle? [J]. The American Statistician, 1998, 52 (4):315-318
    [18] 吴东方. 固体催化剂机械强度的基础研究. 天津:天津大学博士学位论文,2002: 138-138
    [19] Imamura S, Nakamura M, Kawabata N, et al. Wet oxidation of poly(ethylene glycol) catalyzed by magansescerium composite oxide[J]. Ind Eng Chem Prod Res Dev, 1986, 25(1):34-37
    [20] Mahajani V, Shende V. Kinetics of wet air oxidation of glyoxalic acid and oxalic acid[J]. Ind Eng Chem Res, 1994, 33(12):3125-3130
    [21] Klein M T, Boock L T. Experimental kinetics and mechanistic modeling of the oxidation of simple mixtures in near-critical water[J]. Ind Eng Chem Res, 1994, 33(11):2554-2562
    [22] Lin S S, Weng H S. Liquid-phase oxidation of cyclohexane over CoAPO-5: synergism effect of coreactant and solvent effect [J]. Appl Catal A, 1994, 118(1):21-31
    [23] Duprea D, Delanoe F, Barbierjr J, et al. Catalytic oxidation of organic compounds in aqueous media[J]. Catal Today, 1996, 29(1/4):317-322
    [24] Rivas F J, Kolaczkowski S T, Beltran F J, et al. Development of a model for the wet air oxidation of phenol based on a free radical mechanism[J]. Chem Eng Sci, 1998, 53(14):2575-2586
    [25] Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment [J]. Chem Rev, 1993, 93(2):671-711
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.6 %DOWNLOAD: 3.6 %FULLTEXT: 92.2 %FULLTEXT: 92.2 %META: 4.1 %META: 4.1 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 85.5 %其他: 85.5 %Ashburn: 3.1 %Ashburn: 3.1 %Beijing: 1.6 %Beijing: 1.6 %Hangzhou: 0.5 %Hangzhou: 0.5 %Newark: 0.5 %Newark: 0.5 %Shijiazhuang: 3.1 %Shijiazhuang: 3.1 %XX: 4.7 %XX: 4.7 %深圳: 1.0 %深圳: 1.0 %其他AshburnBeijingHangzhouNewarkShijiazhuangXX深圳Highcharts.com
计量
  • 文章访问数:  967
  • HTML全文浏览数:  909
  • PDF下载数:  271
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-03-08
闫晓淼, 李先如, 卫皇曌, 何松波, 余丽, 孙承林. 响应面法在催化湿式氧化降解异佛尔酮中的应用[J]. 环境化学, 2012, 31(12): 1865-1873.
引用本文: 闫晓淼, 李先如, 卫皇曌, 何松波, 余丽, 孙承林. 响应面法在催化湿式氧化降解异佛尔酮中的应用[J]. 环境化学, 2012, 31(12): 1865-1873.
YAN Xiaomiao, LI Xianru, WEI Huangzhao, HE Songbo, YU Li, SUN Chenglin. Application of response surface method in the degradation of isophorone by catalytic wet air oxidation[J]. Environmental Chemistry, 2012, 31(12): 1865-1873.
Citation: YAN Xiaomiao, LI Xianru, WEI Huangzhao, HE Songbo, YU Li, SUN Chenglin. Application of response surface method in the degradation of isophorone by catalytic wet air oxidation[J]. Environmental Chemistry, 2012, 31(12): 1865-1873.

响应面法在催化湿式氧化降解异佛尔酮中的应用

  • 1.  中国科学院大连化学物理研究所, 大连, 116023;
  • 2.  中国科学院大学, 北京, 100049
基金项目:

国家高科技研究发展计划(863)项目(2009AA063903)

青年基金-博士科研探索课题(S2010144)资助.

摘要: 以Ru/TiZrO2为催化剂,采用催化湿式氧化法降解异佛尔酮废水,选择反应温度、氧气分压、反应时间、催化剂用量、初始pH为影响因素,以TOC去除率为响应值,采用响应面法研究影响因素及其交互作用对响应值的影响,建立二次多项式回归方程模型,并采用后退回归法进行模型精简.结果表明,反应时间和反应温度及其交互作用对TOC去除率影响极显著(P≤0.01);反应时间的二次项对TOC去除率影响显著(P≤0.05).随着反应温度的升高和反应时间的延长,TOC去除率逐渐提高.最后对模型进行验证,实验值与预测值具有很好的一致性,说明模型具有可靠的预测性,将该模型应用到催化湿式氧化中合理可行.质谱和离子色谱检测到异佛尔酮的降解产物主要为有机酮与小分子羧酸,由此提出对反应机理和降解途径的假设.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回