淡水水体中氮污染源的识别 ——利用硝酸根中氮和氧同位素组成

陈自祥, 柳后起, 刘广, 刘颖, 尹雪斌. 淡水水体中氮污染源的识别 ——利用硝酸根中氮和氧同位素组成[J]. 环境化学, 2012, 31(12): 1855-1864.
引用本文: 陈自祥, 柳后起, 刘广, 刘颖, 尹雪斌. 淡水水体中氮污染源的识别 ——利用硝酸根中氮和氧同位素组成[J]. 环境化学, 2012, 31(12): 1855-1864.
CHEN Zixiang, LIU Houqi, LIU Guang, LIU Ying, YIN Xuebin. Tracing nitrogen sources and cycle in freshwater system using nitrogen and oxygen isotopic values in nitrate[J]. Environmental Chemistry, 2012, 31(12): 1855-1864.
Citation: CHEN Zixiang, LIU Houqi, LIU Guang, LIU Ying, YIN Xuebin. Tracing nitrogen sources and cycle in freshwater system using nitrogen and oxygen isotopic values in nitrate[J]. Environmental Chemistry, 2012, 31(12): 1855-1864.

淡水水体中氮污染源的识别 ——利用硝酸根中氮和氧同位素组成

  • 基金项目:

    江苏省太湖水专项基金(BK2007736)资助.

Tracing nitrogen sources and cycle in freshwater system using nitrogen and oxygen isotopic values in nitrate

  • Fund Project:
  • 摘要: 氮营养盐污染在全球很多区域都是一个备受关注的环境问题,尤其是以农业为主的区域和人口密集的区域,因此,关于水体中氮污染源识别技术尤为重要.硝酸根离子中的氮、氧同位素组成在过去的十几年中频繁地应用于识别淡水水体中氮污染源的研究中.本文总结了已知氮污染源中氮、氧同位素组成的特征变化区间,阐述了影响氮、氧同位素组成的主要因素,描述了3种氮、氧同位素组成主流的测试方法,展望了未来定量测算各种氮污染源贡献比例的前景.在实际研究中,还将氮、氧同位素组成和水体化学特征结合,则可以有效地识别淡水水体的氮污染源.随着检测精度的不断提高,各种代表性端元污染物同位素值经验区间也变得更加准确.
  • 加载中
  • [1] Widory D,Petelet-Giraud E, Negrel P, et al. Tracking the source of nitrate in groundwater using coupled nitrogen and boron isotopes: A synthesis[J]. Environmental Science and Technology, 2005, 39: 539-548
    [2] Li S L, Liu C Q, Li J, et al. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approch[J]. Environmental Science and Technology, 2010, 44(5): 1573-1578
    [3] Wu C, Maurer C, Wang Y, et al. Water pollution and human health in China[J]. Environmental Health Perspectives, 1999, 107(4): 251-256
    [4] Kendall C. Tracing sources and cycling of nitrate in catchments//Kendall C, Mcdonnell J J (Eds.). Isotope tracers in catchment hydrology[M]. Amsterdam Elsevier, 1998: 519-576
    [5] Silva S R, Lee P B, Ebbert R W, et al. Forensic applications of nitrogen and oxygen isotopes of nitrate in an urban environment[J]. Environmental Forensics, 2002, 3: 125-130
    [6] Liu C Q, LI S L, Lang Y C, et al. Using delta N-15 and delta O-18 values to identify nitrate sources in karst ground water, Guiyang, Southwest China[J]. Environmental Science and Technology, 2006, 40(22): 6928-6933
    [7] Seiler R L. Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater[J]. Applied Geochemistry, 2005, 20: 1626-1636
    [8] Faure G. Principles of Isotope Geology[M]. New York: Wiley and Sons Publishers, 1986
    [9] Cook G A, Lauer C M. Oxygen//Clifford, Hampel A (Ed). The encyclopedia of the chemical elements[M]. New York: Wiley and Sons Publishers, 1968: 499-512
    [10] Kendall C, Elliott E M, Wankel S D. Tracing anthropogenic inputs of nitrogen to ecosystems// Michener R, Lajtha K(Eds). Stable isotopes in ecology and environmental science(Second Edition)[M]. Oxford, UK: Blackwell Publishing Ltd, 2007: 375-449
    [11] Hübner H. Isotope effects of nitrogen in the soil and biosphere//Fritz P, Fontes J C P (Eds). Handbook of Environmental Isotope Geochemistry[M]. Amsterdam: Elsevier, 1986: 361-425
    [12] Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review[J]. Chemical Geology, 1986, 59: 87-102
    [13] Flipse W J, Bonner F T. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York[J].Ground Water, 1985, 23: 59-67
    [14] Xue D M, Botte J, Baets B D, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface and groundwater[J]. Water Research, 2009, 43(5): 1159-1170
    [15] Fogg G E, Rolston D E, Decker D L, et al. Spatial variation in nitrogen isotope values beneath nitrate contamination sources[J]. Ground Water, 1998, 36: 418-426
    [16] Lee K S, Bong Y S, Lee D H, et al. Tracking the sources of nitrate in the Han River watershed in Korea, using δ15N-NO3- and δ18O-NO3- values[J]. Science of the Total Environment, 2008, 395(23): 117-124
    [17] Pardo L H, Kendall C, Pett-Ridge J, et al. Evaluating the source of stream water nitrate using 15N and18O in nitrate in two watersheds in New Hampshire, USA[J]. Hydrological Process, 2004, 18: 2699-2712
    [18] Amberger A, Schmididt H L. Natürliche isotopengehalte von nitat als indikatoren für dessen herkunft[J]. Geochim et Cosmochim Acta, 1987, 51: 2699-2705
    [19] Durka W, Schulze E D, Gabauer G, et al. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements[J]. Nature, 1994, 372: 765-767
    [20] Hollocher T C. Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation[J]. Arch Biochem Biophys, 1984, 233: 721-727
    [21] Chang C C Y, Langston J, Riggss M, et al. Method for nitrate collection for 15N and18O analysis from waters with low nitrate concentrations[J]. Can J Fish Aquat Sci,1999, 56: 1856-1864
    [22] Silva S R, Kendall C, Wilkson D H, et al. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios[J]. J Hydrol, 2000, 228: 22-36
    [23] Fukada T, Hiscock K M, Dennis P F, et al. A dual isotope approach to identify denitrification in ground water at a river bank infiltration site[J]. Water Resources, 2003, 37: 3070-3078
    [24] Kendall C, Grim E. Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water[J]. Anal Chem, 1990, 62: 526-529
    [25] Sigman D M, Casciotti K L, Andreani M, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater[J]. Anal Chem, 2001, 73: 4145-4153
    [26] Rock L, Ellert B H. Nitrogen-15 and oxygen-18 natural abundance of potassium chloride extractable soil nitrate using the denitrifier method[J]. Soil Sci Soc Am J, 2007, 71: 355-361
    [27] CasiottiK L, Sigman D M, GlanterHastings M, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method[J]. Anal Chem, 2002, 74: 4905-4912
    [28] Mcilvin M R, Altabet M A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater[J]. Anal Chem, 2005, 77: 589-595
    [29] Wood E D, Armstrong F A J, Richards F A. Determinationof nitrate in seawater by cadmium-copper reduction to nitrite[J]. J Mar Biol Assoc, 1967, 47: 23-31
    [30] Margeson J H, Suggs J C, Midett M R. Reduction of nitrate to nitrite with cadmium[J]. Anal Chem, 1980, 52: 1955-1957
    [31] Kellman L M. A study of tile drain nitrate-delta N-15 values as a tool for assessing nitrate sources in an agricultural region[J]. Nutr Cycle Agroecosyst, 2005, 71: 131-137
    [32] Griffiths H. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes[M]. BIOS Scientific Publishers, 1998
    [33] Feigin A, Shearea G, Kohl D H, et al. The amount and nitrogen-15 content of nitrate in soil profiles from two central Illinois fields in a corn-soybean rotation[J]. Soil Sci Soc Amer Proc, 1974, 38: 465-471
    [34] Glibert P M, Capone D G. Mineralization and assimilation in aquatic, sediment, and wetland systems//Knowles R, Blackburn T H (Eds). Nitrogen Isotope Techniques[M]. New York: Academic Press, 1993: 243-272
    [35] Fogel M L, Cifuentes L A. Isotope fractionation during primary production//Engel M H, Macko S A.Organic Geochemistry[M]. New York: Plenum Press, 1993: 73-98
    [36] Macko S A, Ostrom N E. Molecular and pollution studies using stable isotope//Lajtha K, Michner R (Eds). Stable Isotopes in Ecology and Environmental Science[M]. Oxford, UK: Blackwell Scientific, 1994: 45-62
    [37] Kool D M, Wrage N, Oenema O, et al. Oxygen exchange between (de)nitrification intermediates and H2O and its implication for source determination of NO3- and N2O: a review[J]. Rapid Commun Mass Spectrom, 2007, 21: 3569-3578
    [38] Koba K, Tokuchi N, Wada E, et al. Intermittent denitrification: The application of a 15N natural abundance method to a forested ecosystem[J]. Geochimica et Cosmochimica Acta, 1997, 61: 5043-5050
    [39] Smith V H, Tilman G D, Nekola J C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[J]. Environmental Pollution, 1999, 100: 179-196
    [40] Sebilo M, Billen G, Mayer B, et al. Assessing nitrification and denitrification in the Seine River and estuary using chemical and isotopic techniques[J]. Ecosystems, 2006, 9: 564-577
    [41] Mengis M, Schiff S L, Harris M, et al. Multiple geochemical and isotopic approaches for assessing ground water NO3- elimination in a riparian zone[J]. Ground Water, 1999, 37: 448-457
    [42] Mosier A R, Schimel D S. Nitrification and denitrification//Knowles R, Blackburn T H (Eds). Nitrogen Isotope Techniques[M]. San Diego: Academic Press, 1993: 181-208
    [43] Town-send A, Mccarthy M J, Brandes J A, et al. Stable isotopic composition of nitrate in Lake Taihu, China, and major inflow rivers[J]. Hydrobiologia, 2007, 194(3): 135-140
    [44] Choi W J, Han G H, Lee S M, et al. Impact of land-use types on nitrate concentration and δ15N in unconfined ground water in rural areas of Korea[J]. Agric Ecosyst Environ, 2007, 120: 259-268
    [45] Voss M, Deutsch B, Elmgren R, et al. Sources identification of nitrate by means of isotopic tracers in the Baltic Sea catchments[J]. Biogeosciences, 2006, 3: 663-676
    [46] Lang Y C, Liu C Q, Zhao Z Q, et al. Geochemistry of surface and ground water in Guiyang city, China: Water/rock interaction and pollution in karst hydrological system[J]. Applied Geochemistry, 2006, 21: 887-903
    [47] Deutsch B, Kohle P, Voss M. Assessing the source of nitrate pollution in water using stable N and O isotopes[J]. Agron Sustain Dev, 2006, 26: 263-267
    [48] Philips D L, Koch P L. Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia, 2002, 130: 114-125
    [49] Moore J W, Semmens B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecol Lett, 2008, 11: 470-480
  • 加载中
计量
  • 文章访问数:  1182
  • HTML全文浏览数:  1139
  • PDF下载数:  407
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-03-01
陈自祥, 柳后起, 刘广, 刘颖, 尹雪斌. 淡水水体中氮污染源的识别 ——利用硝酸根中氮和氧同位素组成[J]. 环境化学, 2012, 31(12): 1855-1864.
引用本文: 陈自祥, 柳后起, 刘广, 刘颖, 尹雪斌. 淡水水体中氮污染源的识别 ——利用硝酸根中氮和氧同位素组成[J]. 环境化学, 2012, 31(12): 1855-1864.
CHEN Zixiang, LIU Houqi, LIU Guang, LIU Ying, YIN Xuebin. Tracing nitrogen sources and cycle in freshwater system using nitrogen and oxygen isotopic values in nitrate[J]. Environmental Chemistry, 2012, 31(12): 1855-1864.
Citation: CHEN Zixiang, LIU Houqi, LIU Guang, LIU Ying, YIN Xuebin. Tracing nitrogen sources and cycle in freshwater system using nitrogen and oxygen isotopic values in nitrate[J]. Environmental Chemistry, 2012, 31(12): 1855-1864.

淡水水体中氮污染源的识别 ——利用硝酸根中氮和氧同位素组成

  • 1.  中国科学技术大学地球和空间科学学院, 合肥, 230001;
  • 2.  中国科学技术大学香港城市大学联合高等研究中心,环境科学技术联合实验室, 苏州, 215123
基金项目:

江苏省太湖水专项基金(BK2007736)资助.

摘要: 氮营养盐污染在全球很多区域都是一个备受关注的环境问题,尤其是以农业为主的区域和人口密集的区域,因此,关于水体中氮污染源识别技术尤为重要.硝酸根离子中的氮、氧同位素组成在过去的十几年中频繁地应用于识别淡水水体中氮污染源的研究中.本文总结了已知氮污染源中氮、氧同位素组成的特征变化区间,阐述了影响氮、氧同位素组成的主要因素,描述了3种氮、氧同位素组成主流的测试方法,展望了未来定量测算各种氮污染源贡献比例的前景.在实际研究中,还将氮、氧同位素组成和水体化学特征结合,则可以有效地识别淡水水体的氮污染源.随着检测精度的不断提高,各种代表性端元污染物同位素值经验区间也变得更加准确.

English Abstract

参考文献 (49)

返回顶部

目录

/

返回文章
返回