北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征

狄一安, 杨勇杰, 周瑞, 于跃, 郭婧, 王婧瑞, 马志强, 张乐坚. 北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002
引用本文: 狄一安, 杨勇杰, 周瑞, 于跃, 郭婧, 王婧瑞, 马志强, 张乐坚. 北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002
DI Yi'an, YANG Yongjie, ZHOU Rui, YU Yue, GUO Jing, WANG Jingrui, MA Zhiqiang, ZHANG Lejian. Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring[J]. Environmental Chemistry, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002
Citation: DI Yi'an, YANG Yongjie, ZHOU Rui, YU Yue, GUO Jing, WANG Jingrui, MA Zhiqiang, ZHANG Lejian. Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring[J]. Environmental Chemistry, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002

北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征

  • 基金项目:

    国家自然科学基金项目(41105089)

    北京市自然科学基金项目(8121002)资助.

Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring

  • Fund Project:
  • 摘要: 为比较北京城区与远郊区大气颗粒物中水溶性无机离子的组成特征,2012年4月,利用Andersen分级撞击式采样器同时在2个采样点进行大气颗粒物分级采样,样品采用离子色谱分析.结果表明,城区和上甸子大气颗粒物中水溶性无机离子总浓度分别为(83.748.9) gm-3和(75.552.9) gm-3,NO3-、SO42-和NH4+是最主要的水溶性无机离子,分别占总离子浓度的81.2%和84.2%.粒径分布显示,Mg2+和Ca2+在5.89.0 m的粒径范围出现峰值,Na+、NH4+、Cl-在0.431.1 m和4.79.0m的粒径范围出现双峰,K+、NO3-和SO42-在0.652.1 m的粒径范围出现峰值.后向轨迹簇分析表明,气团来自南方时,城区和上甸子二次离子浓度分别为(92.440.0) gm-3和(95.035.4) gm-3,来自其他方向时,分别为(24.010.8) gm-3和(13.310.6) gm-3.
  • 加载中
  • [1] IPCC. limate Change 2007: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva, Switzerland: IPCC, 2007
    [2] [2] Gilli G, Traversi D, Rovere R, et al.Airborne particulate matter: Ionic species role in different Italian sites[J]. Environ Res, 2007, 103: 1-8
    [3] [3] Myhre G, Myhre A, Stordal F. Historical evolution of radiative forcing of climate[J]. Atmospheric Environment, 2001, 35(13): 2361-2373
    [4] [4] Verma S, Boucher O, Upadhyaya H C, et al. Sulfate aerosols forcing: An estimate using a three-dimensional interactive chemistry scheme[J]. Atmospheric Environment. 2006, 40(40): 7953-7962
    [5] [5] Sheffield, P, Roy, A, Wong, K, et al. Fine particulate matter pollution linked to respiratory illness in infants and increased hospital costs[J]. Health Aff (Millwood),2011, 30 (5): 871-878
    [6] [6] Neuberger M, Schimek M G, Horak Jr F, et al, Acute effects of particulate matter on respiratory diseases, symptoms and functions: epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP)[J]. Atmos Environ, 2004, 38: 3971-3981
    [7] [7] Tie X X, Wu D, Brasseur G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China[J]. Atmos Environ, 2009, 43: 2375-2377
    [8] [8] Ali-Mohamed A Y. Estimation of inorganic particulate matter in the atmosphere of Isa Town, Bahrain, by dry deposition. Atmos Environ, 1991, Part B 25: 397-405
    [9] [9] Sun Y, Zhuang G, Tang A A, et al. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J]. Environ Sci Technol, 2006, 40: 3148-3155
    [10] [10] Hueglin C, Gehrig R, Urs Baltensperger U, et al. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland[J]. Atmos Environ, 2005, 39: 637-651
    [11] [11] Zhang T, Cao J J, Tie X X, et al. Water-soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources[J]. Atmospheric Research, 2011, 102: 110-119
    [12] [12] Yang Yongjie, Wang Yuesi, Huang Weiwei, et al. Size distributions and elemental compositions of PM on typical clear, haze and fog days in Beijing, China[J]. Advances in Atmospheric Sciences, 2010, 27(3): 663-675
    [13] [13] Wang Y, Zhuang G, Tang A,et al. The ion chemistry and the source of PM2.5 aerosol in Beijing[J]. Atmospheric Environment, 2005, 39: 3771-3784
    [14] [14] Wang Y, Zhuang G, Sun Y, et al. Water-soluble part of the aerosol in the dust storm season-evidence of the mixing between mineral and pollution aerosols[J]. Atmospheric Environment, 2005, 39: 7020-7029
    [15] [20] Wang Y, Zhuang G S, Zhang X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment, 2006, 40(16): 2935-2952
    [16] [25] Tang G, Li X, Wang Y, et al. Surface ozone trend details and interpretations in Beijing, 2001—2006[J]. Atmospheric Chemistry and Physics, 2009, 9: 8813-8823
  • 加载中
计量
  • 文章访问数:  1116
  • HTML全文浏览数:  1026
  • PDF下载数:  687
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-03-27
狄一安, 杨勇杰, 周瑞, 于跃, 郭婧, 王婧瑞, 马志强, 张乐坚. 北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002
引用本文: 狄一安, 杨勇杰, 周瑞, 于跃, 郭婧, 王婧瑞, 马志强, 张乐坚. 北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征[J]. 环境化学, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002
DI Yi'an, YANG Yongjie, ZHOU Rui, YU Yue, GUO Jing, WANG Jingrui, MA Zhiqiang, ZHANG Lejian. Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring[J]. Environmental Chemistry, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002
Citation: DI Yi'an, YANG Yongjie, ZHOU Rui, YU Yue, GUO Jing, WANG Jingrui, MA Zhiqiang, ZHANG Lejian. Size distributions of water-soluble inorganic ions at urban and rural sites in Beijing during spring[J]. Environmental Chemistry, 2013, 32(9): 1604-1610. doi: 10.7524/j.issn.0254-6108.2013.09.002

北京春季城区与远郊区不同大气粒径颗粒物中水溶性离子的分布特征

  • 1.  国家环境分析测试中心, 北京, 100029;
  • 2.  北京城市气象工程技术研究中心, 北京, 100089;
  • 3.  中国气象局气象探测中心, 北京, 100081
基金项目:

国家自然科学基金项目(41105089)

北京市自然科学基金项目(8121002)资助.

摘要: 为比较北京城区与远郊区大气颗粒物中水溶性无机离子的组成特征,2012年4月,利用Andersen分级撞击式采样器同时在2个采样点进行大气颗粒物分级采样,样品采用离子色谱分析.结果表明,城区和上甸子大气颗粒物中水溶性无机离子总浓度分别为(83.748.9) gm-3和(75.552.9) gm-3,NO3-、SO42-和NH4+是最主要的水溶性无机离子,分别占总离子浓度的81.2%和84.2%.粒径分布显示,Mg2+和Ca2+在5.89.0 m的粒径范围出现峰值,Na+、NH4+、Cl-在0.431.1 m和4.79.0m的粒径范围出现双峰,K+、NO3-和SO42-在0.652.1 m的粒径范围出现峰值.后向轨迹簇分析表明,气团来自南方时,城区和上甸子二次离子浓度分别为(92.440.0) gm-3和(95.035.4) gm-3,来自其他方向时,分别为(24.010.8) gm-3和(13.310.6) gm-3.

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回