[1]
|
唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006
|
[2]
|
Bridgett E. Coleman, Bruce S. Ault. Investigation of the mechanism of ozonolysis of (Z)-3-methyl-2-pentene using matrix isolation infrared spectroscopy[J]. Journal of Molecular Structure. 2013,1031:138-143
|
[3]
|
Emma J F, Matthew J A, George M, et al. Reactions of alkenes with ozone in the gas phase: A matrix-isolation study of secondary ozonides and carbonyl-containing reaction products[J]. Spectrochimica Acta, 2000,56:2605-2616
|
[4]
|
于静,沈敏敏,哈成勇,等. 烯烃臭氧化反应中两性离子反应新进展[J].化工进展,2010,2(29):328-333
|
[5]
|
Harries C, Liebigs Ann. Study of the reaction of ozone with Ethylene.[J].Chem, 1905, (343): 311-320
|
[6]
|
Bailey P S. Ozonation in organic chemistry olefinic compounds[M]. New York: Academic Press, Inc., 1978, 1:285-298
|
[7]
|
Criegee R. Mechanisms of ozonolysis[J]. Angew Chem Int Ed Engl, 1975,14:745-752
|
[8]
|
Laura P, Bruce S Ault. Infrared matrix isolation and theoretical study of the initial intermediates in the reaction of ozone with cyclohepten [J]. Journal of Molecular Structure, 2012,1026:23-29
|
[9]
|
Bailey P S. The reactions of ozone with organic compounds[J]. Chem Rev, 1958, 58:925-1010
|
[10]
|
Lattimer R P.Kuczkowski R L.Gillies C W.Mechanism of ozonolysis and dipole moments of propylene and trans-2-Butene ozonides:(b)Orbital symmetry analysis(a)microwave spectra,structures[J].Chem SOC,1974(96):348-358
|
[11]
|
Dieter C. Theoretical determination of molecular structure and conformation. stereoselectivity of the ozonolysis reaction[J].Chem Soc,1981,103(13):3619-3626
|
[12]
|
Durham L J, Greenwood F L. The molozonide as an intermediate in the ozonolysis of cis and trans alkenes[J]. Org Chem, 1968, 33: 1629-1632
|
[13]
|
Bailey P S, Ferrell T M. Mechanism of ozonolysis a more flexible stereochemical concept. [J]. Amer Chem Soc, 1978, 100:899-905
|
[14]
|
Pimentel G C, Spratleg R D. Chemical boriding clarified through quantum mechanics[M]. California: Holden-Day, 1969.
|
[15]
|
Niki H, Maker P D, Savage C M, et al. Fourier transform infrared study of the gas-phase reaction of O, with Trans-CHCI=CHCI in O,-Rich mixtures. Branching ratio for 0-atom production via dissociation of the primary criegee intermediate[J]. Chem, 1984, 88: 766-769
|
[16]
|
Martinez R I, Herron J T. Stopped-flow studies of the mechanisms of ozone-alkene reactions in the gas phase: Tetramethylethylene[J]. Chem, 1987,91: 946-953
|
[17]
|
Paulson S E, Orlando J. The reactions of ozone with alkenes: An important source of HOx in the boundary layer[J]. Geophys Res Lett, 1996, 23: 3727-3730
|
[18]
|
David J D, Marston G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere[J]. Chem Soc Rev, 2008, 37:699-716
|
[19]
|
Donahue N M, Kroll J H, Anderson J G, et al. Direct observation of OH production from the ozonolysis of olefins Geophys[J]. Res Lett, 1998, 25:59-62
|
[20]
|
Siese M,Becker K H, Brochmann K L J,et al. Direct measurement of OH radicals from ozonolysis of selected Alkenes: A euphore simulation chamber study Environ[J]. Sci Technol, 2001, 35:4660-4667
|
[21]
|
Atkinson R, Aschmann S M, Arey J, et al. Formation of OH radicals in the gas phase reactions of O3 with a series of terpenes[J]. Journal of Geophysical Research, 1992,97: 6065-6073
|
[22]
|
Andrew R. Rickard, David Johnson, Charlotte D McGill, et al. OH yields in the gas-phase reactions of ozone with alkenes[J]. Phys Chem A, 1999, 103:7656-7664
|
[23]
|
Albert A P, Neil M D. Ozonolysis fragment quenching by nitrate formation: The pressure dependence of prompt OH radical formation[J]. Chem A, 2004, 108(42):9096-9104
|
[24]
|
Kroll J H, Clarke J M, Donahue N M. et al. Mechanism of HOx formation in the gas-phase ozone-alkene reaction. 1. Direct, pressure-dependent measurements of prompt OH yields[J]. Chem A, 2001,105:1554-1560
|
[25]
|
McGill D D, Rickard A R, Johnson D, et al. Product yields in the reactions of ozone with Z-but-2-ene, E-but-2-ene and 2-methylbut-2-ene[J]. Chemosphere,1999,38: 1205-1212
|
[26]
|
Gutbrod R, Schindler R N, Kraka E. Formation of OH radicals in the gas phase ozonolysis of alkenes: The unexpected role of carbonyl oxides[J]. Chemical Physics Letters, 1996,252: 221-229
|
[27]
|
Rathman W C, Claxton T A, Rickard A R, et al. Theoretical investigation of OH formation in the gas-phase ozonolysis of E-but-2-ene and Z-but-2-ene[J]. Phys Chem, 1999, 1: 3981-3985
|
[28]
|
Neeb P, Moortgat G K. Formation of OH Radicals in the gas-phase reaction of propene, isobutene, and isoprene with O3: Yields and mechanistic implications[J]. Phys Chem A, 2003, 107: 6176-6182
|
[29]
|
Niki H, Maker P D, Savage C M, et al. Spectroscopic study of the mechanism for the gas-phase reaction between ozone and tetra-methylethylene[J]. Phys Chem, 1987, 91:941-946
|
[30]
|
Epstein S A, Donahue N M. Ozonolysis of cyclic alkenes as surrogates for biogenic terpenes: Primary ozonide formation and decomposition[J]. Phys Chem A, 2010, 114:7509-7515
|
[31]
|
Went F W. Blue hazes in the almosphere[J]. Nature, 1960, 187(4738): 641-643
|
[32]
|
Seinfeid J H, Pankow J F. Organic atmosphere particulate material[J]. Annu Rev Phys Chem, 2003, 54: 12l-140
|
[33]
|
汪午,王省良,李黎,等.天然源二次有机气溶胶的研究进展[J]. 地球化学,2008,1 (37):77-86
|
[34]
|
Claeys M, Bim G, Gyorgy V, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J].Science, 2004, 5661(303):1173-1176
|
[35]
|
Tsigaridis K, Kanakidou M. Atmospheric environment secondary organic aerosol in the future atmosphere[J]. Atmospheric Environment, 2007,22(41): 4682-4692
|
[36]
|
Claeys M, Wang W, Ion A C,et al. Formation of secondary organic aerosol from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide[J]. Atmos Environ,2004,38(25): 4093-4098
|
[37]
|
Hoffmann T,Odum J R,Bowman F. et a1. Formation of organic aerosols from the oxidation of biogenic hydrocarbons[J]. Atmos Chem, 1997, 26: 189-222
|
[38]
|
Gdffm R J, Cocker D L, Flagan R C, et a1. Organic aerosol formation from the oxidation of biogenic hydrocarbons[J]. J Geophys Res Atmos, 1999, 104: 3555-3567
|
[39]
|
Tolocka M P, Jang M, Ginter J M,et al. Formation of oligomers in secondary organic aerosol[J]. Environ Sci Technol, 2004, 38(5):1428-1434
|
[40]
|
Carlton1 A G, Wiedinmyer C, Kroll J H. A review of secondary organic aerosol (SOA) formation from isoprene[J]. Atmospheric Chemistry and Physics Discussions, 2009, 2(9):8261-8305
|
[41]
|
Nguyen T B, Bateman A P, Bones D L, et al. High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene[J]. Atmospheric Environment, 2010, 8(44):1032-1043
|
[42]
|
Perraud V, Bruns E A, Ezell M J, et al. Nonequilibrium atmospheric secondary organic aerosol formation and growth[J]. PNAS,2012, 8 (109): 2836-2841
|
[43]
|
Griesbaum K, Volpp W, Greinert R,et al. Ozonolysis of tetrasubstituted ethylenes, cycloolefins, and conjugated dienes on polyethylene[J]. Org Chem,1989, 2(54):383-389
|
[44]
|
James K P, Steven R D. Photochemical reaction of ozone and dimethylacetylene: An infrared matrix isolation and ab initio investigation[J]. Phys Chem A 1999, 103: 7280-7286
|
[45]
|
Hoops M D, Ault B S. Matrix isolation study of the early intermediates in the ozonolysis of cyclopentene and cyclopentadiene: Observation of two criegee intermediates[J]. Am Chem Soc, 2009, 131:2853-2863
|
[46]
|
邓建国,陈建华,刘红杰,等. 基质隔离傅里叶红外光谱研究臭氧与乙烯的反应机制[J].环境科学研究,2012,25(1):1-9
|