烯烃臭氧化反应机制的研究进展

杨晓璐, 陈建华, 邓建国, 徐义生, 耿春梅, 白志鹏. 烯烃臭氧化反应机制的研究进展[J]. 环境化学, 2013, 32(11): 2050-2058. doi: 10.7524/j.issn.0254-6108.2013.11.007
引用本文: 杨晓璐, 陈建华, 邓建国, 徐义生, 耿春梅, 白志鹏. 烯烃臭氧化反应机制的研究进展[J]. 环境化学, 2013, 32(11): 2050-2058. doi: 10.7524/j.issn.0254-6108.2013.11.007
YANG Xiaolu, CHEN Janhua, DENG Janguo, XU Yisheng, GENG Chunmei, BAI Zhipeng. The research progress on the reaction mechanisms of ozone and alkenes[J]. Environmental Chemistry, 2013, 32(11): 2050-2058. doi: 10.7524/j.issn.0254-6108.2013.11.007
Citation: YANG Xiaolu, CHEN Janhua, DENG Janguo, XU Yisheng, GENG Chunmei, BAI Zhipeng. The research progress on the reaction mechanisms of ozone and alkenes[J]. Environmental Chemistry, 2013, 32(11): 2050-2058. doi: 10.7524/j.issn.0254-6108.2013.11.007

烯烃臭氧化反应机制的研究进展

  • 基金项目:

    国家自然科学基金项目(21277132);国家环境保护公益性行业科研专项(201309046);环境模拟与污染控制国家重点联合实验室专项(11K03ESPCP)。

The research progress on the reaction mechanisms of ozone and alkenes

  • Fund Project:
  • 摘要: 烯烃与臭氧反应在化工合成中常用来合成醛和酮,此反应在污水处理过程中常用来去除有机污染物,还可以用作有机结构的鉴定.烯烃是对流层大气中最活泼的VOC,与臭氧反应可以生成OH自由基,也是二次有机气溶胶(SOA)的重要来源.本文主要内容包括:(1)气相和液相中烯烃臭氧化反应对环境的影响.(2)烯烃臭氧化反应的研究进展.该部分主要包括以Criegee机制为基础的液相和气相中烯烃臭氧化反应机理的研究进展;三种中间体的可能结构及反应过程中的立体选择性问题;气相中烯烃臭氧化反应体系的压力及Criegee中间体的结构对OH自由基产额的影响;异戊二烯和萜烯类化合物对对流层中SOA生成的影响.(3)低温基质隔离技术在烯烃臭氧化反应研究中的应用,并列举了最新的研究成果.
  • 加载中
  • [1] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006
    [2] Bridgett E. Coleman, Bruce S. Ault. Investigation of the mechanism of ozonolysis of (Z)-3-methyl-2-pentene using matrix isolation infrared spectroscopy[J]. Journal of Molecular Structure. 2013,1031:138-143
    [3] Emma J F, Matthew J A, George M, et al. Reactions of alkenes with ozone in the gas phase: A matrix-isolation study of secondary ozonides and carbonyl-containing reaction products[J]. Spectrochimica Acta, 2000,56:2605-2616
    [4] 于静,沈敏敏,哈成勇,等. 烯烃臭氧化反应中两性离子反应新进展[J].化工进展,2010,2(29):328-333
    [5] Harries C, Liebigs Ann. Study of the reaction of ozone with Ethylene.[J].Chem, 1905, (343): 311-320
    [6] Bailey P S. Ozonation in organic chemistry olefinic compounds[M]. New York: Academic Press, Inc., 1978, 1:285-298
    [7] Criegee R. Mechanisms of ozonolysis[J]. Angew Chem Int Ed Engl, 1975,14:745-752
    [8] Laura P, Bruce S Ault. Infrared matrix isolation and theoretical study of the initial intermediates in the reaction of ozone with cyclohepten [J]. Journal of Molecular Structure, 2012,1026:23-29
    [9] Bailey P S. The reactions of ozone with organic compounds[J]. Chem Rev, 1958, 58:925-1010
    [10] Lattimer R P.Kuczkowski R L.Gillies C W.Mechanism of ozonolysis and dipole moments of propylene and trans-2-Butene ozonides:(b)Orbital symmetry analysis(a)microwave spectra,structures[J].Chem SOC,1974(96):348-358
    [11] Dieter C. Theoretical determination of molecular structure and conformation. stereoselectivity of the ozonolysis reaction[J].Chem Soc,1981,103(13):3619-3626
    [12] Durham L J, Greenwood F L. The molozonide as an intermediate in the ozonolysis of cis and trans alkenes[J]. Org Chem, 1968, 33: 1629-1632
    [13] Bailey P S, Ferrell T M. Mechanism of ozonolysis a more flexible stereochemical concept. [J]. Amer Chem Soc, 1978, 100:899-905
    [14] Pimentel G C, Spratleg R D. Chemical boriding clarified through quantum mechanics[M]. California: Holden-Day, 1969.
    [15] Niki H, Maker P D, Savage C M, et al. Fourier transform infrared study of the gas-phase reaction of O, with Trans-CHCI=CHCI in O,-Rich mixtures. Branching ratio for 0-atom production via dissociation of the primary criegee intermediate[J]. Chem, 1984, 88: 766-769
    [16] Martinez R I, Herron J T. Stopped-flow studies of the mechanisms of ozone-alkene reactions in the gas phase: Tetramethylethylene[J]. Chem, 1987,91: 946-953
    [17] Paulson S E, Orlando J. The reactions of ozone with alkenes: An important source of HOx in the boundary layer[J]. Geophys Res Lett, 1996, 23: 3727-3730
    [18] David J D, Marston G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere[J]. Chem Soc Rev, 2008, 37:699-716
    [19] Donahue N M, Kroll J H, Anderson J G, et al. Direct observation of OH production from the ozonolysis of olefins Geophys[J]. Res Lett, 1998, 25:59-62
    [20] Siese M,Becker K H, Brochmann K L J,et al. Direct measurement of OH radicals from ozonolysis of selected Alkenes: A euphore simulation chamber study Environ[J]. Sci Technol, 2001, 35:4660-4667
    [21] Atkinson R, Aschmann S M, Arey J, et al. Formation of OH radicals in the gas phase reactions of O3 with a series of terpenes[J]. Journal of Geophysical Research, 1992,97: 6065-6073
    [22] Andrew R. Rickard, David Johnson, Charlotte D McGill, et al. OH yields in the gas-phase reactions of ozone with alkenes[J]. Phys Chem A, 1999, 103:7656-7664
    [23] Albert A P, Neil M D. Ozonolysis fragment quenching by nitrate formation: The pressure dependence of prompt OH radical formation[J]. Chem A, 2004, 108(42):9096-9104
    [24] Kroll J H, Clarke J M, Donahue N M. et al. Mechanism of HOx formation in the gas-phase ozone-alkene reaction. 1. Direct, pressure-dependent measurements of prompt OH yields[J]. Chem A, 2001,105:1554-1560
    [25] McGill D D, Rickard A R, Johnson D, et al. Product yields in the reactions of ozone with Z-but-2-ene, E-but-2-ene and 2-methylbut-2-ene[J]. Chemosphere,1999,38: 1205-1212
    [26] Gutbrod R, Schindler R N, Kraka E. Formation of OH radicals in the gas phase ozonolysis of alkenes: The unexpected role of carbonyl oxides[J]. Chemical Physics Letters, 1996,252: 221-229
    [27] Rathman W C, Claxton T A, Rickard A R, et al. Theoretical investigation of OH formation in the gas-phase ozonolysis of E-but-2-ene and Z-but-2-ene[J]. Phys Chem, 1999, 1: 3981-3985
    [28] Neeb P, Moortgat G K. Formation of OH Radicals in the gas-phase reaction of propene, isobutene, and isoprene with O3: Yields and mechanistic implications[J]. Phys Chem A, 2003, 107: 6176-6182
    [29] Niki H, Maker P D, Savage C M, et al. Spectroscopic study of the mechanism for the gas-phase reaction between ozone and tetra-methylethylene[J]. Phys Chem, 1987, 91:941-946
    [30] Epstein S A, Donahue N M. Ozonolysis of cyclic alkenes as surrogates for biogenic terpenes: Primary ozonide formation and decomposition[J]. Phys Chem A, 2010, 114:7509-7515
    [31] Went F W. Blue hazes in the almosphere[J]. Nature, 1960, 187(4738): 641-643
    [32] Seinfeid J H, Pankow J F. Organic atmosphere particulate material[J]. Annu Rev Phys Chem, 2003, 54: 12l-140
    [33] 汪午,王省良,李黎,等.天然源二次有机气溶胶的研究进展[J]. 地球化学,2008,1 (37):77-86
    [34] Claeys M, Bim G, Gyorgy V, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J].Science, 2004, 5661(303):1173-1176
    [35] Tsigaridis K, Kanakidou M. Atmospheric environment secondary organic aerosol in the future atmosphere[J]. Atmospheric Environment, 2007,22(41): 4682-4692
    [36] Claeys M, Wang W, Ion A C,et al. Formation of secondary organic aerosol from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide[J]. Atmos Environ,2004,38(25): 4093-4098
    [37] Hoffmann T,Odum J R,Bowman F. et a1. Formation of organic aerosols from the oxidation of biogenic hydrocarbons[J]. Atmos Chem, 1997, 26: 189-222
    [38] Gdffm R J, Cocker D L, Flagan R C, et a1. Organic aerosol formation from the oxidation of biogenic hydrocarbons[J]. J Geophys Res Atmos, 1999, 104: 3555-3567
    [39] Tolocka M P, Jang M, Ginter J M,et al. Formation of oligomers in secondary organic aerosol[J]. Environ Sci Technol, 2004, 38(5):1428-1434
    [40] Carlton1 A G, Wiedinmyer C, Kroll J H. A review of secondary organic aerosol (SOA) formation from isoprene[J]. Atmospheric Chemistry and Physics Discussions, 2009, 2(9):8261-8305
    [41] Nguyen T B, Bateman A P, Bones D L, et al. High-resolution mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene[J]. Atmospheric Environment, 2010, 8(44):1032-1043
    [42] Perraud V, Bruns E A, Ezell M J, et al. Nonequilibrium atmospheric secondary organic aerosol formation and growth[J]. PNAS,2012, 8 (109): 2836-2841
    [43] Griesbaum K, Volpp W, Greinert R,et al. Ozonolysis of tetrasubstituted ethylenes, cycloolefins, and conjugated dienes on polyethylene[J]. Org Chem,1989, 2(54):383-389
    [44] James K P, Steven R D. Photochemical reaction of ozone and dimethylacetylene: An infrared matrix isolation and ab initio investigation[J]. Phys Chem A 1999, 103: 7280-7286
    [45] Hoops M D, Ault B S. Matrix isolation study of the early intermediates in the ozonolysis of cyclopentene and cyclopentadiene: Observation of two criegee intermediates[J]. Am Chem Soc, 2009, 131:2853-2863
    [46] 邓建国,陈建华,刘红杰,等. 基质隔离傅里叶红外光谱研究臭氧与乙烯的反应机制[J].环境科学研究,2012,25(1):1-9
  • 加载中
计量
  • 文章访问数:  4791
  • HTML全文浏览数:  4716
  • PDF下载数:  2747
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-01-30
杨晓璐, 陈建华, 邓建国, 徐义生, 耿春梅, 白志鹏. 烯烃臭氧化反应机制的研究进展[J]. 环境化学, 2013, 32(11): 2050-2058. doi: 10.7524/j.issn.0254-6108.2013.11.007
引用本文: 杨晓璐, 陈建华, 邓建国, 徐义生, 耿春梅, 白志鹏. 烯烃臭氧化反应机制的研究进展[J]. 环境化学, 2013, 32(11): 2050-2058. doi: 10.7524/j.issn.0254-6108.2013.11.007
YANG Xiaolu, CHEN Janhua, DENG Janguo, XU Yisheng, GENG Chunmei, BAI Zhipeng. The research progress on the reaction mechanisms of ozone and alkenes[J]. Environmental Chemistry, 2013, 32(11): 2050-2058. doi: 10.7524/j.issn.0254-6108.2013.11.007
Citation: YANG Xiaolu, CHEN Janhua, DENG Janguo, XU Yisheng, GENG Chunmei, BAI Zhipeng. The research progress on the reaction mechanisms of ozone and alkenes[J]. Environmental Chemistry, 2013, 32(11): 2050-2058. doi: 10.7524/j.issn.0254-6108.2013.11.007

烯烃臭氧化反应机制的研究进展

  • 1. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京, 100012
基金项目:

国家自然科学基金项目(21277132);国家环境保护公益性行业科研专项(201309046);环境模拟与污染控制国家重点联合实验室专项(11K03ESPCP)。

摘要: 烯烃与臭氧反应在化工合成中常用来合成醛和酮,此反应在污水处理过程中常用来去除有机污染物,还可以用作有机结构的鉴定.烯烃是对流层大气中最活泼的VOC,与臭氧反应可以生成OH自由基,也是二次有机气溶胶(SOA)的重要来源.本文主要内容包括:(1)气相和液相中烯烃臭氧化反应对环境的影响.(2)烯烃臭氧化反应的研究进展.该部分主要包括以Criegee机制为基础的液相和气相中烯烃臭氧化反应机理的研究进展;三种中间体的可能结构及反应过程中的立体选择性问题;气相中烯烃臭氧化反应体系的压力及Criegee中间体的结构对OH自由基产额的影响;异戊二烯和萜烯类化合物对对流层中SOA生成的影响.(3)低温基质隔离技术在烯烃臭氧化反应研究中的应用,并列举了最新的研究成果.

English Abstract

参考文献 (46)

返回顶部

目录

/

返回文章
返回