有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制

韩兰芳, 孙可, 康明洁, 吴丰昌, Baoshan XING. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014, 33(11): 1811-1820. doi: 10.7524/j.issn.0254-6108.2014.11.009
引用本文: 韩兰芳, 孙可, 康明洁, 吴丰昌, Baoshan XING. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014, 33(11): 1811-1820. doi: 10.7524/j.issn.0254-6108.2014.11.009
HAN Lanfang, SUN Ke, KANG Mingjie, WU Fengchang, Baoshan XING. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J]. Environmental Chemistry, 2014, 33(11): 1811-1820. doi: 10.7524/j.issn.0254-6108.2014.11.009
Citation: HAN Lanfang, SUN Ke, KANG Mingjie, WU Fengchang, Baoshan XING. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J]. Environmental Chemistry, 2014, 33(11): 1811-1820. doi: 10.7524/j.issn.0254-6108.2014.11.009

有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制

  • 基金项目:

    国家自然科学基金项目(41273106)资助.

Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants

  • Fund Project:
  • 摘要: 作为重要的地质吸附剂,土壤/沉积物中的有机质是环境中疏水性有机污染物主要的汇.由于有机质的结构异质性,疏水性有机污染物一旦进入其中,会被吸附在不同的位点上,反应活性和生态风险进而会发生变化.对疏水性有机污染物在有机质上的吸附进行研究有助于了解其在环境中的分布,传输及生物有效性.本文就疏水性有机污染物在土壤/沉积物中的有机质上吸附的国内外研究进展进行了综述,讨论了重要有机质组分(腐殖质和碳黑)的结构和吸附作用差异性,重点分析了有机质的微孔特性和官能团对吸附的影响机制.
  • 加载中
  • [1] Sparks D L. Environmental soil chemistry[M]. United States: Academic Press, 2003
    [2] Lambert S M. Omega (OMEGA), a useful index of soil sorption equilibria[J]. Journal of Agricultural and Food Chemistry, 1968, 16(2): 340-343
    [3] Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds[J]. Science, 1979, 206(16): 831-842
    [4] Gschwend P M, Imboden D M. Environmental organic chemistry, 2nd ed[M]. New York: John Wiley & Sons, 2004
    [5] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments[J]. Water Research, 1979, 13(3): 241-248
    [6] Karickhoff S W. Organic pollutant sorption in aquatic systems[J]. Journal of Hydraulic Engineering, 1984, 110(6): 707-735
    [7] Chiou C T, Porter P E, Schmedding D W. Partition equilibriums of nonionic organic compounds between soil organic matter and water[J]. Environmental Science & Technology, 1983, 17(4): 227-231
    [8] Weber Jr W J, McGinley P M, Katz L E. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments[J]. Environmental Science & Technology, 1992, 26(10): 1955-1962
    [9] Xing B, Pignatello J J. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter[J]. Environmental Science & Technology, 1997, 31(3): 792-799
    [10] Cornelissen G, Rigterink H, Ferdinandy M M A, et al. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation[J]. Environmental Science & Technology, 1998, 32(7): 966-970
    [11] 段林, 张承东, 陈威. 土壤和沉积物中疏水性有机污染物的锁定及其环境效应[J]. 环境化学, 2011, 30(1): 242-251
    [12] Cornelissen G, Gustafsson Ö, Bucheli T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environmental Science & Technology, 2005, 39(18): 6881-6895
    [13] Kelleher B P, Simpson A J. Humic substances in soils: Are they really chemically distinct?[J]. Environmental Science & Technology, 2006, 40(15): 4605-4611
    [14] Xu M, He Y, Wu J. Functions of Natural Organic Matter in Changing Environment[M]. Netherlands: Springer, 2013
    [15] Steelink C. Peer Reviewed: Investigating humic acids in soils[J]. Analytical Chemistry, 2002, 74(11): 326A-333A
    [16] Piccolo A, Nardi S, Concheri G. Macromolecular changes of humic substances induced by interaction with organic acids[J]. European Journal of Soil Science, 1996, 47(3): 319-328
    [17] Piccolo A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science[J]. Advances in Agronomy, 2002, 75(2): 57-134
    [18] Sun K, Jin J, Kang M, et al. Isolation and characterization of different organic matter fractions from a same soil source and their phenanthrene sorption[J]. Environmental Science & Technology, 2013, 47(10): 5138-5145
    [19] 孙红文, 张闻. 疏水性有机污染物在土壤/沉积物中的赋存状态研究[J]. 环境化学, 2011, 30(1): 232-241
    [20] Aiken G R, McKnight D M, Wershaw R L, et al. Humic substances in soil, sediment, and water: Geochemistry, isolation and characterization[M]. New York: John Wiley & Sons, 1985
    [21] Hatcher P, Breger I, Maciel G, et al. Geochemistry of Humin[M]. New York: John Wiley & Sons, 1985
    [22] Kang S, Xing B. Phenanthrene sorption to sequentially extracted soil humic acids and humins[J]. Environmental Science & Technology, 2005, 39(1): 134-140
    [23] Lehmann J, Joseph S. Biochar for environmental management: Science and technology[M]. London: Earthscan, 2009
    [24] Gustafsson Ö, Haghseta F, Chan C, et al. Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability[J]. Environmental Science & Technology, 1996, 31(1): 203-209
    [25] Cornelissen G, Gustafsson Ö. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates[J]. Environmental Science & Technology, 2004, 38(1): 148-155
    [26] Jonker M T, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations[J]. Environmental Science & Technology, 2002, 36(17): 3725-3734
    [27] Teixidó M, Hurtado C, Pignatello J J, et al. Predicting contaminant adsorption in black carbon (biochar)-amended soil for the veterinary antimicrobial sulfamethazine[J]. Environmental Science & Technology, 2013, 47(3): 6197-6205
    [28] Wang M M, Zhou Q X. Long-term carbon sequestration and environmental immobilization of biochar: A review[J]. Advanced Materials Research, 2013, 790(11): 475-478
    [29] Sun K, Kang M, Zhang Z, et al. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental Science & Technology, 2013, 47(20): 11473-11481
    [30] Al-Wabel M I, Al-Omran A, El-Naggar A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131: 374-379
    [31] Mukome F N, Zhang X, Silva L C, et al. Use of chemical and physical characteristics to investigate trends in biochar feedstocks[J]. Journal of Agricultural and Food Chemistry, 2013, 61(9): 2196-2204
    [32] Keiluweit M, Nico P S, Johnson M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253
    [33] Zhu D, Pignatello J J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model[J]. Environmental Science & Technology, 2005, 39(7): 2033-2041
    [34] Schmidt M W I, Noack A G. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges[J]. Global Biogeochemical Cycles, 2000, 14(3): 777-793
    [35] Sun H, Tateda M, Ike M, et al. Short- and long- term sorption/desorption of polycyclic aromatic hydrocarbons onto artificial solids: Effects of particle and pore sizes and organic matters[J]. Water Research, 2003, 37(12): 2960-2968
    [36] Sun K, Ran Y, Yang Y, et al. Interaction mechanism of benzene and phenanthrene in condensed organic matter: Importance of adsorption (nanopore-filling)[J]. Geoderma, 2013, 204(12): 68-74
    [37] Ran Y, Sun K, Yang Y, et al. Strong sorption of phenanthrene by condensed organic matter in soils and sediments[J]. Environmental Science & Technology, 2007, 41(11): 3952-3958
    [38] Shechter M, Chefetz B. Insights into the sorption properties of cutin and cutan biopolymers[J]. Environmental Science & Technology, 2008, 42(4): 1165-1171
    [39] Yang Y, Shu L, Wang X, et al. Impact of de-ashing humic acid and humin on organic matter structural properties and sorption mechanisms of phenanthrene[J]. Environmental Science & Technology, 2011, 45(9): 3996-4002
    [40] Yang C, Huang W, Xiao B, et al. Intercorrelations among degree of geochemical alterations, physicochemical properties, and organic sorption equilibria of kerogen[J]. Environmental Science & Technology, 2004, 38(16): 4396-4408
    [41] Cornelissen G, Kukulska Z, Kalaitzidis S, et al. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environmental Science & Technology, 2004, 38(13): 3632-3640
    [42] 王子莹, 金洁, 张哲赟, 等. 土壤和沉积物中有机质对双酚 A 和 17α-乙炔基雌二醇的吸附行为[J]. 环境化学, 2012, 31(5):625-630
    [43] Wen B, Zhang J J, Zhang S Z, et al. Phenanthrene sorption to soil humic acid and different humin fractions[J]. Environmental Science & Technology, 2007, 41(9): 3165-3171
    [44] Gunasekara A S, Simpson M J, Xing B. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids[J]. Environmental Science & Technology, 2003, 37(5): 852-858
    [45] Wang X, Guo X, Yang Y, et al. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample[J]. Environmental Science & Technology, 2011, 45(6): 2124-2130
    [46] Xing B. Sorption of naphthalene and phenanthrene by soil humic acids[J]. Environmental Pollution, 2001, 111(2): 303-309
    [47] Chen D, Xing B, Xie W. Sorption of phenanthrene, naphthalene and o-xylene by soil organic matter fractions[J]. Geoderma, 2007, 139(3): 329-335
    [48] Liang C, Dang Z, Xiao B, et al. Equilibrium sorption of phenanthrene by soil humic acids[J]. Chemosphere, 2006, 63(11): 1961-1968
    [49] Mao J D, Hundal L, Thompson M, et al. Correlation of poly(methylene)-rich amorphous aliphatic domains in humic substances with sorption of a nonpolar organic contaminant, phenanthrene[J]. Environmental Science & Technology, 2002, 36(5): 929-936
    [50] 孙可. 珠江三角洲地区土壤和沉积物中凝聚态有机质及其对有机污染物吸附行为的影响. 广州: 广州地球化学研究所博士论文, 2007
    [51] Cornelissen G, Elmquist M, Groth I, et al. Effect of sorbate planarity on environmental black carbon sorption[J]. Environmental Science & Technology, 2004, 38(13): 3574-3580
    [52] Zhang J, He M. Predicted models for phenanthrene sorption nonlinearity and capacity based on different HA/BC ratios in sediments[J]. Journal of Colloid and Interface Science, 2009, 337(2): 338-344
    [53] Karapanagioti H K, Kleineidam S, Sabatini D A, et al. Impacts of heterogeneous organic matter on phenanthrene sorption: Equilibrium and kinetic studies with aquifer material[J]. Environmental Science & Technology, 2000, 34(3): 406-414
    [54] De Jonge H, Mittelmeijer-Hazeleger M C. Adsorption of CO2 and N2 on soil organic matter: Nature of porosity, surface area, and diffusion mechanisms[J]. Environmental Science & Technology, 1996, 30(2): 408-413
    [55] Walker Jr P, Kini K. Measurement of the ultrafine surface area of coals[J]. Fuel, 1965, 44(6): 453-458
    [56] Pignatello J J, Kwon S, Lu Y. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): Attenuation of surface activity by humic and fulvic acids[J]. Environmental Science & Technology, 2006, 40(24): 7757-7763
    [57] 丁飞, 蔡进功, 宋明水, 等. 泥质烃源岩中< 2 μm 黏粒级组分的有机质与比表面关系[J]. 中国科学: 地球科学, 2013, 43(4): 634-641
    [58] Ran Y, Yang Y, Xing B, et al. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter[J]. Journal of environmental quality, 2013, 42(3): 806-814
    [59] Wang X, Xing B. Sorption of organic contaminants by biopolymer-derived chars[J]. Environmental Science & Technology, 2007, 41(24): 8342-8348
    [60] Xing B, Pignatello J J, Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environmental Science & Technology, 1996, 30(8): 2432-2440
    [61] Ran Y, Xing B, Rao P S C, et al. Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate[J]. Environmental Science & Technology, 2004, 38(16): 4340-4348
    [62] Kleineidam S, Schüth C, Grathwohl P. Solubility-normalized combined adsorption-partitioning sorption isotherms for organic pollutants[J]. Environmental Science & Technology, 2002, 36(21): 4689-4697
    [63] Yang Y, Sheng G. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environmental Science & Technology, 2003, 37(16): 3635-3639
    [64] Wang X, Cook R, Tao S, et al. Sorption of organic contaminants by biopolymers: Role of polarity, structure and domain spatial arrangement[J]. Chemosphere, 2007, 66(8): 1476-1484
    [65] Mitchell P, Simpson M J. High affinity sorption domains in soil organic matter are blocked by O-alkyl components[J]. Environmental Science & Technology, 2012. 47(3): 412-419
    [66] Guo X, Wang X, Zhou X, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13): 7252-7259
    [67] Chefetz B, Xing B. Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: A review[J]. Environmental science & technology, 2009, 43(6): 1680-1688
    [68] Keiluweit M, Kleber M. Molecular-level interactions in soils and sediments: The role of aromatic π-systems[J]. Environmental Science & Technology, 2009, 43(10): 3421-3429
    [69] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental organic chemistry, 1st ed[M]. New York: Wiley-Interscience, 2002
    [70] Chin Y P, Aiken G R, Danielsen K M. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity[J]. Environmental Science & Technology, 1997, 31(6): 1630-1635
    [71] Xing B. The effect of the quality of soil organic matter on sorption of naphthalene[J]. Chemosphere, 1997, 35(3): 633-642
    [72] Ahmad R, Kookana R S, Alston A M, et al. The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy[J]. Environmental Science & Technology, 2001, 35(5): 878-884
    [73] Chefetz B, Deshmukh A P, Hatcher P G, et al. Pyrene sorption by natural organic matter[J]. Environmental Science & Technology, 2000, 34(14): 2925-2930
    [74] Salloum M J, Chefetz B, Hatcher P G. Phenanthrene sorption by aliphatic-rich natural organic matter[J]. Environmental Science & Technology, 2002, 36(9): 1953-1958
    [75] Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. Journal of Geophysical Research, 2004, 109(D14): D14203-D14245
    [76] Xing B, Chen Z. Spectroscopic evidence for condensed domains in soil organic matter[J]. Soil Science, 1999, 164(1): 40-47
    [77] Gunasekara A S, Xing B. Sorption and desorption of naphthalene by soil organic matter[J]. Journal of Environmental Quality, 2003, 32(1): 240-246
    [78] 蔡进功, 包于进, 杨守业, 等. 泥质沉积物和泥岩中有机质的赋存形式与富集机制[J]. 中国科学: D 辑, 2007, 37(2): 234-243
    [79] Salloum M J, Dudas M J, McGill W B. Variation of 1-naphthol sorption with organic matter fractionation: The role of physical conformation[J]. Organic Geochemistry, 2001, 32(5): 709-719
    [80] Zhang L, LeBoeuf E J, Xing B. Thermal analytical investigation of biopolymers and humic-and carbonaceous-based soil and sediment organic matter[J]. Environmental Science & Technology, 2007, 41(14): 4888-4894
    [81] Young K D, LeBoeuf E J. Glass transition behavior in a peat humic acid and an aquatic fulvic acid[J]. Environmental Science & Technology, 2000, 34(21): 4549-4553
  • 加载中
计量
  • 文章访问数:  2593
  • HTML全文浏览数:  2456
  • PDF下载数:  912
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-01-14
  • 刊出日期:  2014-11-15
韩兰芳, 孙可, 康明洁, 吴丰昌, Baoshan XING. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014, 33(11): 1811-1820. doi: 10.7524/j.issn.0254-6108.2014.11.009
引用本文: 韩兰芳, 孙可, 康明洁, 吴丰昌, Baoshan XING. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014, 33(11): 1811-1820. doi: 10.7524/j.issn.0254-6108.2014.11.009
HAN Lanfang, SUN Ke, KANG Mingjie, WU Fengchang, Baoshan XING. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J]. Environmental Chemistry, 2014, 33(11): 1811-1820. doi: 10.7524/j.issn.0254-6108.2014.11.009
Citation: HAN Lanfang, SUN Ke, KANG Mingjie, WU Fengchang, Baoshan XING. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J]. Environmental Chemistry, 2014, 33(11): 1811-1820. doi: 10.7524/j.issn.0254-6108.2014.11.009

有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制

  • 1.  北京师范大学环境学院水环境模拟国家重点实验室, 北京, 100875;
  • 2.  中国环境科学研究院环境基准和风险评估 国家重点实验室, 北京, 100012;
  • 3.  Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, USA
基金项目:

国家自然科学基金项目(41273106)资助.

摘要: 作为重要的地质吸附剂,土壤/沉积物中的有机质是环境中疏水性有机污染物主要的汇.由于有机质的结构异质性,疏水性有机污染物一旦进入其中,会被吸附在不同的位点上,反应活性和生态风险进而会发生变化.对疏水性有机污染物在有机质上的吸附进行研究有助于了解其在环境中的分布,传输及生物有效性.本文就疏水性有机污染物在土壤/沉积物中的有机质上吸附的国内外研究进展进行了综述,讨论了重要有机质组分(腐殖质和碳黑)的结构和吸附作用差异性,重点分析了有机质的微孔特性和官能团对吸附的影响机制.

English Abstract

参考文献 (81)

返回顶部

目录

/

返回文章
返回