江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较

王斐, 黄益宗, 王小玲, 高柱, 余发新, 徐峰, 保琼莉, 胡莹, 乔敏, 金姝兰, 李季, 向猛. 江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较[J]. 环境化学, 2015, 34(2): 225-233. doi: 10.7524/j.issn.0254-6108.2015.02.2014061802
引用本文: 王斐, 黄益宗, 王小玲, 高柱, 余发新, 徐峰, 保琼莉, 胡莹, 乔敏, 金姝兰, 李季, 向猛. 江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较[J]. 环境化学, 2015, 34(2): 225-233. doi: 10.7524/j.issn.0254-6108.2015.02.2014061802
WANG Fei, HUANG Yizong, WANG Xiaoling, GAO Zhu, YU Faxin, XU Feng, BAO Qiongli, HU Ying, QIAO Min, JIN Shulan, LI Ji, XIANG Meng. Ecological risk assessment of heavy metals in surrounding soils of tungsten ores: Comparison of different evaluation methods[J]. Environmental Chemistry, 2015, 34(2): 225-233. doi: 10.7524/j.issn.0254-6108.2015.02.2014061802
Citation: WANG Fei, HUANG Yizong, WANG Xiaoling, GAO Zhu, YU Faxin, XU Feng, BAO Qiongli, HU Ying, QIAO Min, JIN Shulan, LI Ji, XIANG Meng. Ecological risk assessment of heavy metals in surrounding soils of tungsten ores: Comparison of different evaluation methods[J]. Environmental Chemistry, 2015, 34(2): 225-233. doi: 10.7524/j.issn.0254-6108.2015.02.2014061802

江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较

  • 基金项目:

    国家自然科学基金面上项目(21377152)

    江西省科技计划项目(20142BAB203026)

    江西省科学院省级重点实验室开放基金项目(2012-KLB-1和2013-KLB-08)资助.

Ecological risk assessment of heavy metals in surrounding soils of tungsten ores: Comparison of different evaluation methods

  • Fund Project:
  • 摘要: 对江西省大余县某钨矿区周边的农田土壤进行调查分析,并采用不同的方法对土壤进行评价,结果表明,土壤As、Pb、Zn、Cu和Ni的含量范围分别为15.33-154.65 mg·kg-1、156.29-346.98 mg·kg-1、47.73-277.72 mg·kg-1、19.06-210.24 mg·kg-1和12.00-35.11 mg·kg-1,一些土壤样点的As、Pb、Zn和Cu含量已超过国家土壤环境质量二级标准.利用地累积指数法对土壤进行评价,结果表明土壤均受到As、Pb、Zn、Cu和Ni不同程度的污染;根据CPI(综合污染指数)评价标准,65.7%的土壤处于污染状态;利用TCLP法对土壤生态风险进行评价,结果显示所有土壤并未受到重金属的污染,以内梅罗综合污染指数法对土壤进行综合评价,结果表明该农田土壤重金属生态风险处于安全范围;以潜在生态危害指数法评价,发现Pb、As和Cu达到或超过中等生态风险的样点分别占37.14%、25.72%和2.86%,其他重金属污染风险均属轻微以下.不同评价方法得出的评价结果有差异,人们在评价重金属污染土壤时要根据评价的目的慎重选择合适的评价方法.
  • 加载中
  • [1] 陈怀满, 郑春荣, 涂从, 等. 中国土壤重金属污染现状与防治对策[J]. AMBIO-人类环境杂志, 1999, 28: 130-134
    [2] Olawoyin R, Oyewole S A, Grayson R L. Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta[J]. Ecotoxicology and Environmental Safety, 2012, 85: 120-130
    [3] Surkan P J, Zhang A, Trachtenberg F, et al. Neuropsychological function in children with blood lead levels<10 μg/dl[J]. Neurotoxicology, 2007, 28(6): 1170-1177
    [4] Aelion C M, Davis H T, Lawson A B, et al. Associations of estimated residential soil arsenic and lead concentrations and community-level environmental measures with mother-child health conditions in South Carolina[J]. Health & Place, 2012, 18(4): 774-781
    [5] Bailey S E, Olin T J, Bricka R M, et al. A review of potentially low-cost sorbents for heavy metals[J]. Water Research, 1999, 33(11): 2469-2479
    [6] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3): 409-417
    [7] Ciszewski D, Kubsik U, Aleksander-Kwaterczak U. Long-term dispersal of heavy metals in a catchment affected by historic lead and zinc mining[J]. Journal of Soils and Sediments, 2012, 12(9): 1445-1462
    [8] 韩君, 徐应明, 温兆飞, 等. 重庆某废弃电镀工业园农田土壤重金属污染调查与生态风险评价[J]. 环境化学, 2014, 33(3): 432-439
    [9] 方红亚, 刘足根, 杨国华, 等. 大余县钨矿尾砂库区天然生长植物研究[J]. 江西科学, 2007, 5: 593-597
    [10] 赖宝春. 大余县污灌区镉污染对人体健康影响调查[J]. 环境与开发, 1995, 10(4): 8-9
    [11] 刘晶, 滕彦国, 崔艳芳, 等. 土壤重金属污染生态风险评价方法综述[J]. 环境监测管理与技术, 2007, 19: 6-11
    [12] Muller G. Index of geoaccumulation in sediments of the Rhine river[J]. Geojournal, 1969, 2(3): 108-118
    [13] Ji Y, Feng Y, Wu J, et al. Using geoaccumulation index to study source profiles of soil dust in China[J]. Journal of Environmental Sciences, 2008, 20(5): 571-578
    [14] Cui H M, Zheng C R, Wang S Q, et al. Combined pollution and pollution index of heavy metals in red soil[J]. Pedosphere, 2000, 10(2): 117-124
    [15] 沈章军. 铜陵市铜尾矿区凤丹种植基地重金属污染研究[D]. 安徽:安徽师范大学硕士学位论文, 2006
    [16] Sun Y, Xie Z, Li J, et al. Assessment of toxicity of heavy metal contaminated soils by the toxicity characteristic leaching procedure[J]. Environmental Geochemistry and Health, 2006, 28(1/2): 73-78
    [17] 陈建军, 俞天明, 王碧玲, 等. 用TCLP和形态法评估含磷物质修复铅锌矿污染土壤的效果及其影响因素[J]. 环境科学, 2010, 31: 185-191
    [18] Soltan M E, Fawzy E M, Rashed M N. Assessment on the degree of immobilization of heavy metals in contaminated urban soils by selected phosphate rocks of different particle sizes[J]. Malaysian Journal of Soil Science, 2012, 16: 103-120
    [19] Hakanson Lars. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001
    [20] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000
    [21] 徐昌旭, 苏全平, 李建国, 等. 江西耕地土壤重金属含量与污染状况评价. 全国耕地土壤污染监测与评价技术研讨会, 2006:144-145
    [22] Loska K, Wiechula D, Barska B, et al. Assessment of arsenic enrichment of cultivated soils in southern Poland[J]. Polish Journal of Environmental Studies, 2003, 12(2): 187-192
    [23] Loska K, Wiechua D, Korus I. Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30(2): 159-165
    [24] Atafar Z, Mesdaghinia A, Nouri J, et al. Effect of fertilizer application on soil heavy metal concentration[J]. Environmental Monitoring and Assessment, 2010, 160(1/4): 83-89
    [25] Xue J, Jiang W, Gong S, et al. An evaluation of heavy metals contamination in soils from Ganzhou navel orange orchards by geoaccumulation indexes and statistical analysis[J]. Chemistry and Ecology, 2013, 29(7): 586-594
    [26] 路畅, 王英辉, 杨进文. 广西铅锌矿区土壤重金属污染及优势植物筛选[J]. 土壤通报, 2010, 41(6): 1471-1475
    [27] 刘春早, 黄益宗, 雷鸣, 等. 湘江流域土壤重金属污染及其生态环境风险评价[J]. 环境科学, 2012, 33(1): 260-265
    [28] 刘春早, 黄益宗, 雷鸣, 等. 重金属污染评价方法(TCLP)评价资江流域土壤重金属生态风险[J]. 环境化学, 2011, 30: 1582-1589
    [29] Wu W H, Xie Z M, Xu J M, et al. Immobilization of trace metals by phosphates in contaminated soil near lead/zinc mine tailings evaluated by sequential extraction and TCLP[J]. Journal of Soils and Sediments, 2013, 13(8): 1386-1395
  • 加载中
计量
  • 文章访问数:  1771
  • HTML全文浏览数:  1637
  • PDF下载数:  750
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-06-18
  • 刊出日期:  2015-02-15

江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较

  • 1.  中国科学院生态环境研究中心, 北京, 100085;
  • 2.  农业部环境保护科研监测所, 天津, 300191;
  • 3.  江西省科学院生物资源研究所, 南昌, 330096;
  • 4.  上饶师范学院, 上饶, 334000
基金项目:

国家自然科学基金面上项目(21377152)

江西省科技计划项目(20142BAB203026)

江西省科学院省级重点实验室开放基金项目(2012-KLB-1和2013-KLB-08)资助.

摘要: 对江西省大余县某钨矿区周边的农田土壤进行调查分析,并采用不同的方法对土壤进行评价,结果表明,土壤As、Pb、Zn、Cu和Ni的含量范围分别为15.33-154.65 mg·kg-1、156.29-346.98 mg·kg-1、47.73-277.72 mg·kg-1、19.06-210.24 mg·kg-1和12.00-35.11 mg·kg-1,一些土壤样点的As、Pb、Zn和Cu含量已超过国家土壤环境质量二级标准.利用地累积指数法对土壤进行评价,结果表明土壤均受到As、Pb、Zn、Cu和Ni不同程度的污染;根据CPI(综合污染指数)评价标准,65.7%的土壤处于污染状态;利用TCLP法对土壤生态风险进行评价,结果显示所有土壤并未受到重金属的污染,以内梅罗综合污染指数法对土壤进行综合评价,结果表明该农田土壤重金属生态风险处于安全范围;以潜在生态危害指数法评价,发现Pb、As和Cu达到或超过中等生态风险的样点分别占37.14%、25.72%和2.86%,其他重金属污染风险均属轻微以下.不同评价方法得出的评价结果有差异,人们在评价重金属污染土壤时要根据评价的目的慎重选择合适的评价方法.

English Abstract

参考文献 (29)

目录

/

返回文章
返回