两种海源可溶性有机物对汞在沉积物中吸附特性的影响

刘阳, 张磊. 两种海源可溶性有机物对汞在沉积物中吸附特性的影响[J]. 环境化学, 2015, 34(2): 247-253. doi: 10.7524/j.issn.0254-6108.2015.02.2014050401
引用本文: 刘阳, 张磊. 两种海源可溶性有机物对汞在沉积物中吸附特性的影响[J]. 环境化学, 2015, 34(2): 247-253. doi: 10.7524/j.issn.0254-6108.2015.02.2014050401
LIU Yang, ZHANG Lei. Influence of two dissolved organic matters from marine products on mercury sorption in sediment samples[J]. Environmental Chemistry, 2015, 34(2): 247-253. doi: 10.7524/j.issn.0254-6108.2015.02.2014050401
Citation: LIU Yang, ZHANG Lei. Influence of two dissolved organic matters from marine products on mercury sorption in sediment samples[J]. Environmental Chemistry, 2015, 34(2): 247-253. doi: 10.7524/j.issn.0254-6108.2015.02.2014050401

两种海源可溶性有机物对汞在沉积物中吸附特性的影响

  • 基金项目:

    国家自然科学基金项目(41101094)

    山东省自然科学基金项目(2009ZRB019E5)资助.

Influence of two dissolved organic matters from marine products on mercury sorption in sediment samples

  • Fund Project:
  • 摘要: 选取两种常见的近海滩涂养殖海产品菲律宾蛤仔和海带,分别制备了两种海源性生物的可溶性有机物(DOMc和DOMk),研究了海源性DOM影响下汞在胶州湾两种沉积物样品中的吸附解吸特征.结果表明,Elovich方程能够很好拟合不同DOM处理下汞在沉积物中的动力学过程,其次为双常数方程.添加两种海源性DOM均显著提高了汞在沉积物样品中的吸附速率,其中DOMc促进作用最为显著.Langmuir和Freundlich方程均能很好描述汞的等温吸附过程;与对照处理相比,DOMc使两个沉积物样品对汞的最大吸附量分别增加了70.1%和80.9%,DOMk则分别提高了12.4%和10.2%;海源性DOM抑制了沉积物中汞的释放,其中DOMc的抑制作用最强.添加DOM没有改变汞的吸附量随pH的变化趋势,但在相同pH条件下,DOM仍然明显促进了汞在沉积物中的吸附.研究结果显示,近海水产养殖产生的DOM可通过增加沉积物对汞的吸附而降低其生物有效性,而这却在一定程度上抑制了海湾水体中汞的对外交换,从而增加水体汞污染的风险.
  • 加载中
  • [1] Zhang L, Wong M H. Environmental mercury contamination in China: Sources and impacts[J]. Environmental International, 2007, 33: 108-121
    [2] Holmes P, James K A F, Levy L S. Is low-level environmental mercury exposure of concern to human health?[J]. Science of the Total Environment, 2009, 408 (2): 171-182
    [3] Freire C, Ramos R, Lopez-Espinosa M J, et al. Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain[J]. Environmental Research, 2010, 110(1): 96-104
    [4] Hintelmann H, Harrisb R. Application of multiple stable mercury isotopes to determine the adsorption and desorption dynamics of Hg (II) and MeHg to sediments[J]. Marine Chemistry, 2004, 90(1/4): 165-173
    [5] Shi J B, Liang L N, Jiang G B. The speciation and bioavailability of mercury in sediments of Haihe River, China[J]. Environment International, 2005, 31: 357-365
    [6] Zhou L X, Wong J W C. Effect of dissolved organic matters derived from sludge and composted sludge on soil Cu sorption[J]. Journal of Environmental Quality, 2001, 30(3): 878-883
    [7] 许中坚,刘广深,刘维屏. 土壤中溶解性有机质的环境特性与行为[J]. 环境化学, 2003, 22(5): 427-433
    [8] 赵晓丽, 毕二平. 水溶性有机质对土壤吸附有机污染物的影响[J]. 环境化学, 2014, 33(2): 256-261
    [9] Allard B, Arsenie I. Abiotic reduction of mercury by humic substances in aquatic system-An important process for mercury cycle[J]. Water Air and Soil Pollution, 1991, 56(1): 457-464
    [10] Skyllberg U, Xia K, Bloom P R, et al. Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects[J]. Journal of Environmental Quality, 2000, 29(3): 855-865
    [11] 付会, 刘艺杰, 郑秀苹. 胶州湾海域水产品出口养殖区环境健康状况调查[J]. 海洋湖沼通报, 2012, (3): 109-114
    [12] Barricaso E, Bear U, Calvet R. Dissolved organic matter and adsorption desorption of dinefuron atrazine and carbetam ide by soils[J]. Journal of Environmental Quality, 1992, 21: 737-751
    [13] Talor R W, Griffin G E. The distribution of topically applied heavy metals in soil[J]. Plant and Soil, 1981, 62(1): 147-152
    [14] 祝惠, 阎百兴, 张丰松, 等. 松花江沉积物主要组分对汞吸附的贡献[J]. 环境化学, 2010, 29(5): 865-869
    [15] Jing Y D, He Z L, Yang X E. Effects of pH, organic acids, and competitive cations on mercury desorption in soils[J]. Chemosphere, 2007, 69(10): 1662-1669
    [16] Schluter K. Sorption of inorganic mercury and monomethyl mercury in an iron-humus podzol soil of southern Norway studied by batch experiments[J]. Environmental Geology, 1997, 30 (3/4): 266-279
    [17] Sauvé W, Hendershot W, Allen H E. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden and organic matter[J]. Critical Reviews in Environmental Science and Technology, 2001, 34: 1125-1131
    [18] 陈春羽, 王定勇. 水溶性有机质对土壤及底泥中汞吸附行为的影响[J]. 环境科学学报, 2009, 29(2): 312-317
    [19] Yang Y K, Liang L, Wang D Y. Effect of dissolved organic matter on adsorption and desorption of mercury by soils[J]. Journal of Environmental Sciences, 2008, 20: 1097-1102
    [20] Wallschlager D, Desai M V M, Wilken R D. The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils[J]. Water, Air and Soil Pollution, 1996, 90(3/4): 507-520
    [21] Haitzer M, Aiken G, Ryan J. Binding of mercury (II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio[J]. Environmental Science and Technology, 2002, 36(16): 3564-3570
    [22] Zhang J, Dai J L, Wang R Q, et al. Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China[J]. Colloid and Surface A: Physicochemical and Engineering Aspects, 2009, 335(1/2/3):194-201
    [23] Bäckström M, Dario M, Karlsson S, et al. Effects of a fulvic acid on the adsorption of mercury and cadmium on goethite[J]. Science of the Total Environment, 2003, 304(1/3): 257-268
    [24] 陈同斌, 黄泽春, 陈煌. 废弃物中水溶性有机质对土壤吸附Cd的影响及其机制[J]. 环境科学学报, 2002, 22(2): 150-155
    [25] Chi F H, Amy G L. Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: The effects of hydrophobicity and functional groups[J]. Journal of Colloid and Interface Science, 2004, 274: 380-391
    [26] Gu B H, Schmitt J, Chen Z H, et al. Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models[J]. Environmental Science and Technology, 1994, 28: 38-46
    [27] Dunnivant F M, Jardine P M, Taylor D L, et al. Transport of naturally occurring dissolved organic carbon in laboratory columns containing aquifer material[J]. Soil Sci Soc Am J, 1992, 56: 437-444
    [28] McKnight D M, Bencala K E, Zellweger G W, et al. Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado[J]. Environmental Science and Technology, 1994, 26: 1388-1396
    [29] Yin Y J, Allen H E, Li Y M, et al. Adsorption of mercury (II) by soil: Effects of pH, chloride and organic matter[J]. Journal of Environmental Quality, 1996, 25: 837-844
    [30] Arias M, Pérez-Novo C, Osorio F, et al. Adsorption and desorption of copper and zinc in the surface layer of acid soils[J]. Journal of Colloid and Interface Science, 2005, 288(1): 21-29
    [31] 荆延德,赵石萍,何振立. 土壤中汞的吸附-解吸行为研究进展[J]. 土壤通报, 2010, 41(5): 1270-1274
    [32] Kinniburgh D G, Jackson M L, Syers J K. Adsorption of alkaline earth, transition and heavy metals cations by hydrous oxide gels of iron and aluminum[J]. Soil Science, 1976, 40: 796-799
    [33] 王斐, 王敏, 唐景春, 等. Hg在玲珑金矿区典型农田土壤中的吸附特征研究[J]. 环境科学, 2011, 32(9): 2669-2675
  • 加载中
计量
  • 文章访问数:  1086
  • HTML全文浏览数:  974
  • PDF下载数:  519
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-05-04
  • 刊出日期:  2015-02-15

两种海源可溶性有机物对汞在沉积物中吸附特性的影响

  • 1. 青岛农业大学资源与环境学院, 青岛, 266109
基金项目:

国家自然科学基金项目(41101094)

山东省自然科学基金项目(2009ZRB019E5)资助.

摘要: 选取两种常见的近海滩涂养殖海产品菲律宾蛤仔和海带,分别制备了两种海源性生物的可溶性有机物(DOMc和DOMk),研究了海源性DOM影响下汞在胶州湾两种沉积物样品中的吸附解吸特征.结果表明,Elovich方程能够很好拟合不同DOM处理下汞在沉积物中的动力学过程,其次为双常数方程.添加两种海源性DOM均显著提高了汞在沉积物样品中的吸附速率,其中DOMc促进作用最为显著.Langmuir和Freundlich方程均能很好描述汞的等温吸附过程;与对照处理相比,DOMc使两个沉积物样品对汞的最大吸附量分别增加了70.1%和80.9%,DOMk则分别提高了12.4%和10.2%;海源性DOM抑制了沉积物中汞的释放,其中DOMc的抑制作用最强.添加DOM没有改变汞的吸附量随pH的变化趋势,但在相同pH条件下,DOM仍然明显促进了汞在沉积物中的吸附.研究结果显示,近海水产养殖产生的DOM可通过增加沉积物对汞的吸附而降低其生物有效性,而这却在一定程度上抑制了海湾水体中汞的对外交换,从而增加水体汞污染的风险.

English Abstract

参考文献 (33)

目录

/

返回文章
返回