电化学方法检测海水中铁的研究进展

林明月, 潘大为, 张海云, 苏振翠. 电化学方法检测海水中铁的研究进展[J]. 环境化学, 2015, 34(3): 536-544. doi: 10.7524/j.issn.0254-6108.2015.03.2014062001
引用本文: 林明月, 潘大为, 张海云, 苏振翠. 电化学方法检测海水中铁的研究进展[J]. 环境化学, 2015, 34(3): 536-544. doi: 10.7524/j.issn.0254-6108.2015.03.2014062001
LIN Mingyue, PAN Dawei, ZHANG Haiyun, SU Zhencui. Advances in the determination of iron in seawater by electrochemical methods[J]. Environmental Chemistry, 2015, 34(3): 536-544. doi: 10.7524/j.issn.0254-6108.2015.03.2014062001
Citation: LIN Mingyue, PAN Dawei, ZHANG Haiyun, SU Zhencui. Advances in the determination of iron in seawater by electrochemical methods[J]. Environmental Chemistry, 2015, 34(3): 536-544. doi: 10.7524/j.issn.0254-6108.2015.03.2014062001

电化学方法检测海水中铁的研究进展

  • 基金项目:

    国家自然科学基金项目(41276093)资助.

Advances in the determination of iron in seawater by electrochemical methods

  • Fund Project:
  • 摘要: 海水中的痕量铁作为限制海洋浮游植物初级生产力的关键因素之一,在海洋生物地球化学循环中起着重要的作用.及时分析海水中铁的不同存在形态及其含量,对于进一步认识铁循环机制和有效预防海洋环境污染具有重要意义.电化学方法较其他分析方法在检测海水中痕量铁的含量,尤其是形态分析方面具有独特的优势.本文总结了运用电化学方法检测海水及其他自然水体中铁的分析方法,以期为发展准确、快速测定海水中痕量铁的形态及其含量的分析技术提供基础性参考.
  • 加载中
  • [1] Taylor S. Abundance of chemical elements in the continental crust: A new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8): 1273-1285
    [2] Den Van Berg C, Nimmo M, Abollino O, et al. The determination of trace levels of iron in seawater, using adsorptive cathodic stripping voltammetry[J]. Electroanalysis, 1991, 3(6): 477-484
    [3] Sunda W G, Huntsman S A. Iron uptake and growth limitation in oceanic and coastal phytoplankton[J]. Marine Chemistry, 1995, 50(1): 189-206
    [4] Geider R J, La Roche J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea[J]. Photosynthesis Research, 1994, 39(3): 275-301
    [5] Gran H H. On the conditions for the production of plankton in the sea[J]. Rapp Proc Verb Cons Int Explor Mer, 1931, 75: 37-46
    [6] Martin J H, Fitzwater S. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic[J]. Nature, 1988, 331(6154): 341-343
    [7] Greene R, Falkowskill P, Chisholm S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6493): 123-129
    [8] Morel F, Price N. The biogeochemical cycles of trace metals in the oceans[J]. Science, 2003, 300(5621): 944-947
    [9] Sunda W G. Bioavailability and bioaccumulation of iron in the sea[J]. IUPAC Series in Analytical and Physical Chemistry of Environment Systems, 2001, 7: 41-84
    [10] Wells M L, Price N M, Bruland K W. Iron chemistry in seawater and its relationship to phytoplankton: A workshop report[J]. Marine Chemistry, 1995, 48(2): 157-182
    [11] 邹淑美, 张朝贤. 赤潮的主要特征参数和化学环境[J]. 黄渤海海洋, 1992, 10(3): 73-76
    [12] Wu J, Luther G W. Size-fractionated iron concentrations in the water column of the western North Atlantic Ocean[J]. Limnology and Oceanography, 1994, 39(5): 1119-1129
    [13] Pehkonen S. Determination of the oxidation states of iron in natural waters. A review[J]. Analyst, 1995, 120(11): 2655-2663
    [14] Riso R D, Pernet-Coudrier B, Waeles M, et al. Dissolved iron analysis in estuarine and coastal waters by using a modified adsorptive stripping chronopotentiometric (SCP) method[J]. Analytica Chimica acta, 2007, 598(2): 235-241
    [15] Jiang M, Barbeau K A, Selph K E, et al. The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: A modeling study[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2013, 90: 112-133
    [16] Asan A, Aydin R, Semiz D K, et al. A very sensitive flow-injection spectrophotometric determination method for iron (Ⅱ) and total iron using 2', 3, 4', 5, 7-pentahydroxyflavone[J]. Environmental Monitoring and Assessment, 2013, 185(3): 2115-2121
    [17] Cha K W, Park K W. Determination of iron (Ⅲ) with salicylic acid by the fluorescence quenching method[J]. Talanta, 1998, 46(6): 1567-1571
    [18] Berman S, McLaren J, Willie S. Simultaneous determination of five trace metals in sea water by inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization[J]. Analytical Chemistry, 1980, 52(3): 488-492
    [19] Boniforti R, Ferraroli R, Frigieri P, et al. Intercomparison of five methods for the determination of trace metals in sea water[J]. Analytica Chimica Acta, 1984, 162: 33-46
    [20] Boiteau R M, Fitzsimmons J N, Repeta D J, et al. Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography–inductively coupled plasma-mass spectrometry[J]. Analytical Chemistry, 2013, 85: 4357-4362
    [21] Elrod V A, Johnson K S, Coale K H. Determination of subnanomolar levels of iron (II) and total dissolved iron in seawater by flow injection and analysis with chemiluminescence detection[J]. Analytical Chemistry, 1991, 63(9): 893-898
    [22] Bowie A R, Achterberg E P, Sedwick P N, et al. Real-time monitoring of picomolar concentrations of iron (Ⅱ) in marine waters using automated flow injection-chemiluminescence instrumentation[J]. Environmental Science & Technology, 2002, 36(21): 4600-4607
    [23] Hansard S P, Landing W M. Determination of iron (Ⅱ) in acidified seawater samples by luminol chemiluminescence[J]. Limnology and Oceanography: Methods, 2009, 7: 222-234
    [24] Gledhill M, van den Berg C M G. Measurement of the redox speciation of iron in seawater by catalytic cathodic stripping voltammetry[J]. Marine Chemistry, 1995, 50(1): 51-61
    [25] Aldrich A P, van den Berg C M G. Determination of iron and its redox speciation in seawater using catalytic cathodic stripping voltammetry[J]. Electroanalysis, 1998, 10(6): 369-373
    [26] Ghoneim E M. Simultaneous determination of Mn (Ⅱ), Cu (Ⅱ) and Fe (Ⅲ) as 2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode[J]. Talanta, 2010, 82(2): 646-652
    [27] Gao Z, Siow K S. Determination of trace amounts of iron by catalytic-adsorptive stripping voltammetry[J]. Talanta, 1996, 43(5): 727-733
    [28] Rue E L, Bruland K W. Complexation of iron (Ⅲ) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method[J]. Marine Chemistry, 1995, 50(1): 117-138
    [29] 孙红启. 铁载体和铁离子对细菌生长过程的影响[D]. 济南:山东大学博士学位论文, 2008
    [30] Croot P L, Johansson M. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC)[J]. Electroanalysis, 2000, 12(8): 565-576
    [31] Lu J, Wang J, Yarnitzky C. Ultrasensitive adsorptive–catalytic stripping voltammetry of iron in the presence of hydroxamic acids and hydrogen peroxide[J]. Electroanalysis, 1995, 7(1): 79-82
    [32] van den Berg C M G, Huang Z Q. Determination of iron in seawater using cathodic stripping voltammetry preceded by adsorptive collection with the hanging mercury drop electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 177(1): 269-280
    [33] Jagner D, Renman L, Stefansdottir S H. Determination of iron (Ⅲ) and titanium (Ⅳ) as their solochrome violet RS complexes by constant-current stripping potentiometry: Part 1. Automated single-point calibration method for iron (Ⅲ)[J]. Analytica Chimica Acta, 1993, 281(2): 305-314
    [34] Obata H, van den Berg C M G. Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry[J]. Analytical Chemistry, 2001, 73(11): 2522-2528
    [35] Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe (Ⅲ) oxide during dissimilatory Fe (Ⅲ) reduction by Geothrix fermentans[J]. Applied and Environmental Microbiology, 2002, 68(5): 2294-2299
    [36] Straub K L, Benz M, Schink B. Iron metabolism in anoxic environments at near neutral pH[J]. FEMS Microbiology Ecology, 2001, 34(3): 181-186
    [37] Turner D R, Whitfield M, Dickson A G. The equilibrium speciation of dissolved components in freshwater and sea water at 25 C and 1 atm pressure[J]. Geochimica et Cosmochimica Acta, 1981, 45(6): 855-881
    [38] van den Berg C M G. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene[J]. Analytical Chemistry, 2006, 78(1): 156-163
    [39] Lu M, Rees N V, Kabakaev A S, et al. Determination of iron: Electrochemical methods[J]. Electroanalysis, 2012, 24(8): 1693-1702
    [40] Witter A E, Lewis B L, Luther G W. Iron speciation in the Arabian Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2000, 47(7): 1517-1539
    [41] Wang J. Analytical electrochemistry[M]. Hoboken: John Wiley & Sons, Inc., 2006
    [42] Brainina K Z, Roizenblat E M. Concentration of substances in polarographic analysis. Communication 2. Separation of iron[J]. Zhur Anal Khim, 1963, 18: 1362-1366
    [43] Gledhill M, van den Berg C M G, Nolting R F, et al. Variability in the speciation of iron in the northern North Sea[J]. Marine Chemistry, 1998, 59(3): 283-300
    [44] Boye M, Aldrich A, van den Berg C M G, et al. The chemical speciation of iron in the north-east Atlantic Ocean[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2006, 53(4): 667-683
    [45] Mikkelsen Ø, van den Berg C M G, Schrøder K H. Determination of labile iron at low nmol·L-1 levels in estuarine and coastal waters by anodic stripping voltammetry[J]. Electroanalysis, 2006, 18(1): 35-43
    [46] Santos-Echeandía J. Direct simultaneous determination of Co, Cu, Fe, Ni and V in pore waters by means of adsorptive cathodic stripping voltammetry with mixed ligands[J]. Talanta, 2011, 85(1): 506-512
    [47] Laglera L M, Battaglia G, van den Berg C M G. Effect of humic substances on the iron speciation in natural waters by CLE/CSV[J]. Marine Chemistry, 2011, 127(1): 134-143
    [48]
    [49] Laglera L M, Santos-Echeandía J, Caprara S, et al. Quantification of iron in seawater at the low picomolar range based on optimization of bromate/ammonia/dihydroxynaphtalene system by catalytic adsorptive cathodic stripping voltammetry[J]. Analytical Chemistry, 2013, 85(4): 2486-2492
    [50] Stozhko N Y, Malakhova N A, Fyodorov M V, et al. Modified carbon-containing electrodes in stripping voltammetry of metals[J]. Journal of Solid State Electrochemistry, 2008, 12(10): 1185-1204
    [51] Ugo P, Moretto L M, Moretto D, et al. Trace iron determination by cyclic and multiple square-wave voltammetry at nafion coated electrodes. Applicationto pore-water analysis[J]. Electroanalysis, 2001, 13(8/9): 661-668
    [52] Lu G, Yao X, Wu X, et al. Determination of the total iron by chitosan-modified glassy carbon electrode[J]. Microchemical Journal, 2001, 69(1): 81-87
    [53] Doménech-Carbó A, Doménech-Carbó M T, Gimeno-Adelantado J V, et al. Electrochemistry of iron oxide pigments (earths) from pictorial microsamples attached to graphite-polyester composite electrodes[J]. Analyst, 2001, 126(10): 1764-1772
    [54] Kladeková D, Gálová M, Pikna L U. Voltammetric investigation of the oxidation of iron powder[J]. Particulate Science and Technology, 2005, 23(2): 189-199
    [55] Florence T. Determination of iron by anodic stripping voltammetry[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1970, 26(2/3): 293-298
    [56] Štulíková M, Vydra F. Voltammetry with disk electrodes and its analytical application: IV. The voltammetry of iron (Ⅲ) at the glassy carbonrotating disk electrode in acid media[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 38(2): 349-357
    [57] Ugo P, Moretto L M, De Boni A, et al. Iron (Ⅱ) and iron (Ⅲ) determination by potentiometry and ion-exchange voltammetry at ionomer-coated electrodes[J]. Analytica Chimica Acta, 2002, 474(1): 147-160
    [58] Segura R, Toral M I, Arancibia V. Determination of iron in water samples by adsorptive stripping voltammetry with a bismuth film electrode in the presence of 1-(2-piridylazo)-2-naphthol[J]. Talanta, 2008, 75(4): 973-977
    [59] Gholivand M B, Geravandi B, Parvin M H. Anodic stripping voltammetric determination of iron (Ⅱ) at a carbon paste electrode modified with dithiodianiline (DTDA) and gold nanoparticles (GNP)[J]. Electroanalysis, 2011, 23(6): 1345-1351
    [60] Anguiano D I, García M G, Ruíz C, et al. Electrochemical detection of iron in a lixiviant solution of polluted soil using a modified glassy carbon electrode[J]. International Journal of Electrochemistry, 2012, 2012:1-6
    [61] Gao Z, Li P, Zhao Z. Determination of iron (Ⅱ) with chemically-modified carbon-paste electrodes[J]. Talanta, 1991, 38(10): 1177-1184
    [62] Stefan R I, Bairu S G, van Staden J F. Determination of Fe (Ⅲ) using diamond paste based electrodes[J]. Instrumentation Science & Technology, 2003, 31(4): 411-416
    [63] Bobrowski A, Nowak K, Zarebski J. Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe(Ⅲ)-TEA-BrO3--catalytic system[J]. Analytical and Bioanalytical Chemistry, 2005, 382(7): 1691-1697
    [64] Zakharova E A, Elesova E E, Noskova G N, et al. Direct voltammetric determination of total iron with a gold microelectrode ensemble[J]. Electroanalysis, 2012, 24(11): 2061-2069
    [65] Lu M, Compton R G. Voltammetric determination of iron (Ⅲ) in water[J]. Electroanalysis, 2013, 25(5): 1123-1129
    [66] Young C C, Laitinen H A. Anodic deposition and cathodic stripping of iron in acetate medium[J]. Analytical Chemistry, 1972, 44(3): 457-463
    [67] Jin X, Botte G G. Electrochemical technique to measure Fe (Ⅱ) and Fe (Ⅲ) concentrations simultaneously[J]. Journal of Applied Electrochemistry, 2009, 39(10): 1709-1717
    [68] Gun J, Salaun P, van den Berg C M G. Advantages of using a mercury coated, micro-wire, electrode in adsorptive cathodic stripping voltammetry[J]. Analytica Chimica Acta, 2006, 571(1): 86-92
    [69] 许昆明, 司靖宇. 适用于海洋沉积物间隙水中氧, 锰 (Ⅱ), 铁 (Ⅱ), 硫分析的金汞齐微电极[J]. 分析化学, 2007, 35(8): 1147-1150
    [70] Shervedani R K, Hatefi-Mehrjardi A, Asadi-Farsani A. Sensitive determination of iron (Ⅲ) by gold electrode modified with 2-mercaptosuccinic acid self-assembled monolayer[J]. Analytica Chimica Acta, 2007, 601(2): 164-171
  • 加载中
计量
  • 文章访问数:  1830
  • HTML全文浏览数:  1744
  • PDF下载数:  888
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-06-20
  • 刊出日期:  2015-03-15
林明月, 潘大为, 张海云, 苏振翠. 电化学方法检测海水中铁的研究进展[J]. 环境化学, 2015, 34(3): 536-544. doi: 10.7524/j.issn.0254-6108.2015.03.2014062001
引用本文: 林明月, 潘大为, 张海云, 苏振翠. 电化学方法检测海水中铁的研究进展[J]. 环境化学, 2015, 34(3): 536-544. doi: 10.7524/j.issn.0254-6108.2015.03.2014062001
LIN Mingyue, PAN Dawei, ZHANG Haiyun, SU Zhencui. Advances in the determination of iron in seawater by electrochemical methods[J]. Environmental Chemistry, 2015, 34(3): 536-544. doi: 10.7524/j.issn.0254-6108.2015.03.2014062001
Citation: LIN Mingyue, PAN Dawei, ZHANG Haiyun, SU Zhencui. Advances in the determination of iron in seawater by electrochemical methods[J]. Environmental Chemistry, 2015, 34(3): 536-544. doi: 10.7524/j.issn.0254-6108.2015.03.2014062001

电化学方法检测海水中铁的研究进展

  • 1.  中国科学院烟台海岸带研究所, 中国科学院海岸带环境过程与生态修复重点实验室, 山东省海岸带环境过程重点实验室, 烟台, 264003;
  • 2.  中国科学院大学, 北京, 100049;
  • 3.  烟台大学化学化工学院, 烟台, 264005
基金项目:

国家自然科学基金项目(41276093)资助.

摘要: 海水中的痕量铁作为限制海洋浮游植物初级生产力的关键因素之一,在海洋生物地球化学循环中起着重要的作用.及时分析海水中铁的不同存在形态及其含量,对于进一步认识铁循环机制和有效预防海洋环境污染具有重要意义.电化学方法较其他分析方法在检测海水中痕量铁的含量,尤其是形态分析方面具有独特的优势.本文总结了运用电化学方法检测海水及其他自然水体中铁的分析方法,以期为发展准确、快速测定海水中痕量铁的形态及其含量的分析技术提供基础性参考.

English Abstract

参考文献 (70)

返回顶部

目录

/

返回文章
返回