[1] |
Taylor S. Abundance of chemical elements in the continental crust: A new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8): 1273-1285
|
[2] |
Den Van Berg C, Nimmo M, Abollino O, et al. The determination of trace levels of iron in seawater, using adsorptive cathodic stripping voltammetry[J]. Electroanalysis, 1991, 3(6): 477-484
|
[3] |
Sunda W G, Huntsman S A. Iron uptake and growth limitation in oceanic and coastal phytoplankton[J]. Marine Chemistry, 1995, 50(1): 189-206
|
[4] |
Geider R J, La Roche J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea[J]. Photosynthesis Research, 1994, 39(3): 275-301
|
[5] |
Gran H H. On the conditions for the production of plankton in the sea[J]. Rapp Proc Verb Cons Int Explor Mer, 1931, 75: 37-46
|
[6] |
Martin J H, Fitzwater S. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic[J]. Nature, 1988, 331(6154): 341-343
|
[7] |
Greene R, Falkowskill P, Chisholm S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6493): 123-129
|
[8] |
Morel F, Price N. The biogeochemical cycles of trace metals in the oceans[J]. Science, 2003, 300(5621): 944-947
|
[9] |
Sunda W G. Bioavailability and bioaccumulation of iron in the sea[J]. IUPAC Series in Analytical and Physical Chemistry of Environment Systems, 2001, 7: 41-84
|
[10] |
Wells M L, Price N M, Bruland K W. Iron chemistry in seawater and its relationship to phytoplankton: A workshop report[J]. Marine Chemistry, 1995, 48(2): 157-182
|
[11] |
邹淑美, 张朝贤. 赤潮的主要特征参数和化学环境[J]. 黄渤海海洋, 1992, 10(3): 73-76
|
[12] |
Wu J, Luther G W. Size-fractionated iron concentrations in the water column of the western North Atlantic Ocean[J]. Limnology and Oceanography, 1994, 39(5): 1119-1129
|
[13] |
Pehkonen S. Determination of the oxidation states of iron in natural waters. A review[J]. Analyst, 1995, 120(11): 2655-2663
|
[14] |
Riso R D, Pernet-Coudrier B, Waeles M, et al. Dissolved iron analysis in estuarine and coastal waters by using a modified adsorptive stripping chronopotentiometric (SCP) method[J]. Analytica Chimica acta, 2007, 598(2): 235-241
|
[15] |
Jiang M, Barbeau K A, Selph K E, et al. The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: A modeling study[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2013, 90: 112-133
|
[16] |
Asan A, Aydin R, Semiz D K, et al. A very sensitive flow-injection spectrophotometric determination method for iron (Ⅱ) and total iron using 2', 3, 4', 5, 7-pentahydroxyflavone[J]. Environmental Monitoring and Assessment, 2013, 185(3): 2115-2121
|
[17] |
Cha K W, Park K W. Determination of iron (Ⅲ) with salicylic acid by the fluorescence quenching method[J]. Talanta, 1998, 46(6): 1567-1571
|
[18] |
Berman S, McLaren J, Willie S. Simultaneous determination of five trace metals in sea water by inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization[J]. Analytical Chemistry, 1980, 52(3): 488-492
|
[19] |
Boniforti R, Ferraroli R, Frigieri P, et al. Intercomparison of five methods for the determination of trace metals in sea water[J]. Analytica Chimica Acta, 1984, 162: 33-46
|
[20] |
Boiteau R M, Fitzsimmons J N, Repeta D J, et al. Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography–inductively coupled plasma-mass spectrometry[J]. Analytical Chemistry, 2013, 85: 4357-4362
|
[21] |
Elrod V A, Johnson K S, Coale K H. Determination of subnanomolar levels of iron (II) and total dissolved iron in seawater by flow injection and analysis with chemiluminescence detection[J]. Analytical Chemistry, 1991, 63(9): 893-898
|
[22] |
Bowie A R, Achterberg E P, Sedwick P N, et al. Real-time monitoring of picomolar concentrations of iron (Ⅱ) in marine waters using automated flow injection-chemiluminescence instrumentation[J]. Environmental Science & Technology, 2002, 36(21): 4600-4607
|
[23] |
Hansard S P, Landing W M. Determination of iron (Ⅱ) in acidified seawater samples by luminol chemiluminescence[J]. Limnology and Oceanography: Methods, 2009, 7: 222-234
|
[24] |
Gledhill M, van den Berg C M G. Measurement of the redox speciation of iron in seawater by catalytic cathodic stripping voltammetry[J]. Marine Chemistry, 1995, 50(1): 51-61
|
[25] |
Aldrich A P, van den Berg C M G. Determination of iron and its redox speciation in seawater using catalytic cathodic stripping voltammetry[J]. Electroanalysis, 1998, 10(6): 369-373
|
[26] |
Ghoneim E M. Simultaneous determination of Mn (Ⅱ), Cu (Ⅱ) and Fe (Ⅲ) as 2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode[J]. Talanta, 2010, 82(2): 646-652
|
[27] |
Gao Z, Siow K S. Determination of trace amounts of iron by catalytic-adsorptive stripping voltammetry[J]. Talanta, 1996, 43(5): 727-733
|
[28] |
Rue E L, Bruland K W. Complexation of iron (Ⅲ) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method[J]. Marine Chemistry, 1995, 50(1): 117-138
|
[29] |
孙红启. 铁载体和铁离子对细菌生长过程的影响[D]. 济南:山东大学博士学位论文, 2008
|
[30] |
Croot P L, Johansson M. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC)[J]. Electroanalysis, 2000, 12(8): 565-576
|
[31] |
Lu J, Wang J, Yarnitzky C. Ultrasensitive adsorptive–catalytic stripping voltammetry of iron in the presence of hydroxamic acids and hydrogen peroxide[J]. Electroanalysis, 1995, 7(1): 79-82
|
[32] |
van den Berg C M G, Huang Z Q. Determination of iron in seawater using cathodic stripping voltammetry preceded by adsorptive collection with the hanging mercury drop electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 177(1): 269-280
|
[33] |
Jagner D, Renman L, Stefansdottir S H. Determination of iron (Ⅲ) and titanium (Ⅳ) as their solochrome violet RS complexes by constant-current stripping potentiometry: Part 1. Automated single-point calibration method for iron (Ⅲ)[J]. Analytica Chimica Acta, 1993, 281(2): 305-314
|
[34] |
Obata H, van den Berg C M G. Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry[J]. Analytical Chemistry, 2001, 73(11): 2522-2528
|
[35] |
Nevin K P, Lovley D R. Mechanisms for accessing insoluble Fe (Ⅲ) oxide during dissimilatory Fe (Ⅲ) reduction by Geothrix fermentans[J]. Applied and Environmental Microbiology, 2002, 68(5): 2294-2299
|
[36] |
Straub K L, Benz M, Schink B. Iron metabolism in anoxic environments at near neutral pH[J]. FEMS Microbiology Ecology, 2001, 34(3): 181-186
|
[37] |
Turner D R, Whitfield M, Dickson A G. The equilibrium speciation of dissolved components in freshwater and sea water at 25 C and 1 atm pressure[J]. Geochimica et Cosmochimica Acta, 1981, 45(6): 855-881
|
[38] |
van den Berg C M G. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene[J]. Analytical Chemistry, 2006, 78(1): 156-163
|
[39] |
Lu M, Rees N V, Kabakaev A S, et al. Determination of iron: Electrochemical methods[J]. Electroanalysis, 2012, 24(8): 1693-1702
|
[40] |
Witter A E, Lewis B L, Luther G W. Iron speciation in the Arabian Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2000, 47(7): 1517-1539
|
[41] |
Wang J. Analytical electrochemistry[M]. Hoboken: John Wiley & Sons, Inc., 2006
|
[42] |
Brainina K Z, Roizenblat E M. Concentration of substances in polarographic analysis. Communication 2. Separation of iron[J]. Zhur Anal Khim, 1963, 18: 1362-1366
|
[43] |
Gledhill M, van den Berg C M G, Nolting R F, et al. Variability in the speciation of iron in the northern North Sea[J]. Marine Chemistry, 1998, 59(3): 283-300
|
[44] |
Boye M, Aldrich A, van den Berg C M G, et al. The chemical speciation of iron in the north-east Atlantic Ocean[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2006, 53(4): 667-683
|
[45] |
Mikkelsen Ø, van den Berg C M G, Schrøder K H. Determination of labile iron at low nmol·L-1 levels in estuarine and coastal waters by anodic stripping voltammetry[J]. Electroanalysis, 2006, 18(1): 35-43
|
[46] |
Santos-Echeandía J. Direct simultaneous determination of Co, Cu, Fe, Ni and V in pore waters by means of adsorptive cathodic stripping voltammetry with mixed ligands[J]. Talanta, 2011, 85(1): 506-512
|
[47] |
Laglera L M, Battaglia G, van den Berg C M G. Effect of humic substances on the iron speciation in natural waters by CLE/CSV[J]. Marine Chemistry, 2011, 127(1): 134-143
|
[48] |
|
[49] |
Laglera L M, Santos-Echeandía J, Caprara S, et al. Quantification of iron in seawater at the low picomolar range based on optimization of bromate/ammonia/dihydroxynaphtalene system by catalytic adsorptive cathodic stripping voltammetry[J]. Analytical Chemistry, 2013, 85(4): 2486-2492
|
[50] |
Stozhko N Y, Malakhova N A, Fyodorov M V, et al. Modified carbon-containing electrodes in stripping voltammetry of metals[J]. Journal of Solid State Electrochemistry, 2008, 12(10): 1185-1204
|
[51] |
Ugo P, Moretto L M, Moretto D, et al. Trace iron determination by cyclic and multiple square-wave voltammetry at nafion coated electrodes. Applicationto pore-water analysis[J]. Electroanalysis, 2001, 13(8/9): 661-668
|
[52] |
Lu G, Yao X, Wu X, et al. Determination of the total iron by chitosan-modified glassy carbon electrode[J]. Microchemical Journal, 2001, 69(1): 81-87
|
[53] |
Doménech-Carbó A, Doménech-Carbó M T, Gimeno-Adelantado J V, et al. Electrochemistry of iron oxide pigments (earths) from pictorial microsamples attached to graphite-polyester composite electrodes[J]. Analyst, 2001, 126(10): 1764-1772
|
[54] |
Kladeková D, Gálová M, Pikna L U. Voltammetric investigation of the oxidation of iron powder[J]. Particulate Science and Technology, 2005, 23(2): 189-199
|
[55] |
Florence T. Determination of iron by anodic stripping voltammetry[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1970, 26(2/3): 293-298
|
[56] |
Štulíková M, Vydra F. Voltammetry with disk electrodes and its analytical application: IV. The voltammetry of iron (Ⅲ) at the glassy carbonrotating disk electrode in acid media[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 38(2): 349-357
|
[57] |
Ugo P, Moretto L M, De Boni A, et al. Iron (Ⅱ) and iron (Ⅲ) determination by potentiometry and ion-exchange voltammetry at ionomer-coated electrodes[J]. Analytica Chimica Acta, 2002, 474(1): 147-160
|
[58] |
Segura R, Toral M I, Arancibia V. Determination of iron in water samples by adsorptive stripping voltammetry with a bismuth film electrode in the presence of 1-(2-piridylazo)-2-naphthol[J]. Talanta, 2008, 75(4): 973-977
|
[59] |
Gholivand M B, Geravandi B, Parvin M H. Anodic stripping voltammetric determination of iron (Ⅱ) at a carbon paste electrode modified with dithiodianiline (DTDA) and gold nanoparticles (GNP)[J]. Electroanalysis, 2011, 23(6): 1345-1351
|
[60] |
Anguiano D I, García M G, Ruíz C, et al. Electrochemical detection of iron in a lixiviant solution of polluted soil using a modified glassy carbon electrode[J]. International Journal of Electrochemistry, 2012, 2012:1-6
|
[61] |
Gao Z, Li P, Zhao Z. Determination of iron (Ⅱ) with chemically-modified carbon-paste electrodes[J]. Talanta, 1991, 38(10): 1177-1184
|
[62] |
Stefan R I, Bairu S G, van Staden J F. Determination of Fe (Ⅲ) using diamond paste based electrodes[J]. Instrumentation Science & Technology, 2003, 31(4): 411-416
|
[63] |
Bobrowski A, Nowak K, Zarebski J. Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe(Ⅲ)-TEA-BrO3--catalytic system[J]. Analytical and Bioanalytical Chemistry, 2005, 382(7): 1691-1697
|
[64] |
Zakharova E A, Elesova E E, Noskova G N, et al. Direct voltammetric determination of total iron with a gold microelectrode ensemble[J]. Electroanalysis, 2012, 24(11): 2061-2069
|
[65] |
Lu M, Compton R G. Voltammetric determination of iron (Ⅲ) in water[J]. Electroanalysis, 2013, 25(5): 1123-1129
|
[66] |
Young C C, Laitinen H A. Anodic deposition and cathodic stripping of iron in acetate medium[J]. Analytical Chemistry, 1972, 44(3): 457-463
|
[67] |
Jin X, Botte G G. Electrochemical technique to measure Fe (Ⅱ) and Fe (Ⅲ) concentrations simultaneously[J]. Journal of Applied Electrochemistry, 2009, 39(10): 1709-1717
|
[68] |
Gun J, Salaun P, van den Berg C M G. Advantages of using a mercury coated, micro-wire, electrode in adsorptive cathodic stripping voltammetry[J]. Analytica Chimica Acta, 2006, 571(1): 86-92
|
[69] |
许昆明, 司靖宇. 适用于海洋沉积物间隙水中氧, 锰 (Ⅱ), 铁 (Ⅱ), 硫分析的金汞齐微电极[J]. 分析化学, 2007, 35(8): 1147-1150
|
[70] |
Shervedani R K, Hatefi-Mehrjardi A, Asadi-Farsani A. Sensitive determination of iron (Ⅲ) by gold electrode modified with 2-mercaptosuccinic acid self-assembled monolayer[J]. Analytica Chimica Acta, 2007, 601(2): 164-171
|