混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素

孙婧, 马丽, 杨兆光, 王琳. 混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素[J]. 环境化学, 2015, 34(6): 1057-1063. doi: 10.7524/j.issn.0254-6108.2015.06.2014102305
引用本文: 孙婧, 马丽, 杨兆光, 王琳. 混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素[J]. 环境化学, 2015, 34(6): 1057-1063. doi: 10.7524/j.issn.0254-6108.2015.06.2014102305
SUN Jing, MA Li, YANG Zhaoguang, WANG Lin. Determination of heavy metal elements in various soils by microwave assisted extraction with acid mixture and ICP-MS[J]. Environmental Chemistry, 2015, 34(6): 1057-1063. doi: 10.7524/j.issn.0254-6108.2015.06.2014102305
Citation: SUN Jing, MA Li, YANG Zhaoguang, WANG Lin. Determination of heavy metal elements in various soils by microwave assisted extraction with acid mixture and ICP-MS[J]. Environmental Chemistry, 2015, 34(6): 1057-1063. doi: 10.7524/j.issn.0254-6108.2015.06.2014102305

混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素

  • 基金项目:

    国家重大科技专项-水体污染治理与控制(2013ZX07504-001)和环保公益性行业科研专项(201309052)资助.

Determination of heavy metal elements in various soils by microwave assisted extraction with acid mixture and ICP-MS

  • Fund Project:
  • 摘要: 比较了硝酸(HNO3)、硝酸-盐酸(HNO3:HCl=3:1)、硝酸-盐酸-双氧水(HNO3:HCl:H2O2=3:1:1)和硝酸-盐酸-高氯酸(HNO3:HCl:HClO4=3:1:1)等4种消解液对土壤中铅(Pb)、镉(Cd)、砷(As)、铬(Cr)、镍(Ni)、铜(Cu)和锌(Zn)等7种重金属元素的萃取效率.结果表明,硝酸-盐酸-高氯酸混合液的萃取效果最好,硝酸-盐酸混合液次之.通过对6种土壤标准物质的分析发现,除了Cr之外,其他重金属元素在土壤中的混酸微波可提取态含量与总含量接近.土壤中的Cr有一部分是以铬铁矿的形式存在,在环境中相对较为稳定,采用混酸微波可提取态的Cr来评估其对环境的危害能够获得更加准确的结果.重金属与土壤的结合强弱与成土母质相关,冲积母质的土壤中Pb、Zn和Cu的结合较强,萃取相对较难,Cd、Ni和As与土壤的结合强弱则与成土母质关系不大.采用最优的消解液萃取矿区河流底泥和土壤中的重金属,ICP-MS分析结果表明,底泥中重金属含量较高,应为尾砂冲积而成,矿区周边的土壤也受到不同程度重金属的污染.
  • 加载中
  • [1] Ji K, Kim J, Lee M, et al. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea[J]. Environmental Pollution, 2013, 178: 322-328
    [2] Borgese L, Federici S, Zacco A, et al. Metal fractionation in soils and assessment of environmental contamination in Vallecamonica, Italy[J]. Environmental Science and Pollution Research, 2013, 20(7): 5067-5075
    [3] Li Z Y, Ma Z W, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853
    [4] Zhou J, Dang Z, Cai M, et al. Soil heavy metal pollution around the Dabaoshan Mine, Guangdong Province, China[J]. Pedosphere, 2007, 17(5): 588-594
    [5] Evanylo G, Sukkariyah B, Anderson Eborall M, et al. Bioavailability of heavy metals in biosolids-amended soil[J]. Communications in Soil Science and Plant Analysis, 2006, 37(15/20): 2157-2170
    [6] Lim H, Lee J, Chon H, et al. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea[J]. Journal of Geochemical Exploration, 2008, 96(2/3): 223-230
    [7] 加那尔别克·西里甫汗, 张霖琳, 滕恩江, 等. 电感耦合等离子体质谱法在土壤环境监测中的应用及进展[J]. 环境化学, 2011, 30(10): 1799-1804
    [8] 李海峰, 王庆仁, 朱永官. 土壤重金属测定两种前处理方法的比较[J]. 环境化学, 2006, 25(1): 108-109
    [9] Kaakinen J, Kuokkanen T, Pesonen J, et al. Comparison of different standard methods to evaluate the total concentrations of heavy metals in waste rock[J]. Soil & Sediment Contamination, 2014, 23(4): 437-451
    [10] Gupta B, Kumar R, Rani M. Speciation of heavy metals in water and sediments of an urban lake system[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(10): 1231-1242
    [11] Lamble K, Hill S. Microwave digestion procedures for environmental matrices. Critical Review[J]. Analyst, 1998, 123(7): 103R-133R
    [12] USEPA. Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils[S]. USA, Philadephia PA: United States Environmental Protection Agency, 2007
    [13] Juskelis R, Li W, Nelson J, et al. Arsenic speciation in rice cereals for infants[J]. Journal of agricultural and food chemistry, 2013, 61(45): 10670-10676
    [14] Wang H, Du X, Wang M, et al. Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(Ⅲ) and Cr(Ⅵ) in urine of chromate workers[J]. Talanta, 2010, 81(4/5): 1856-1860
    [15] 陈登云, 蔡彦明. 应用ICP-MS技术分析土壤及污泥中的关键元素的方法研究(二)[J]. 环境化学, 2003, 22(1): 97-98
    [16] Márquez-García B, Pérez-López R, Ruíz-Chancho M J, et al. Arsenic speciation in soils and Erica andevalensis Cabezudo & Rivera and Erica australis L. from São Domingos Mine area, Portugal[J]. Journal of Geochemical Exploration, 2012, 119-120: 51-59
    [17] Da Silva Y, Do Nascimento C W A, Biondi C M. Comparison of USEPA digestion methods to heavy metals in soil samples[J]. Environmental Monitoring and Assessment, 2014, 186(1): 47-53
    [18] Yafa C, Farmer J G. A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry[J]. Analytica Chimica Acta, 2006, 557(1): 296-303
    [19] Blair T C, Mcpherson J G. Alluvial fan processes and forms//Geomorphology of Desert Environments[M]. Springer, 1994: 354-402
    [20] Franz C, Makeschin F, Weiss H, et al. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoa catchment, Brasilia DF: A study on anthropogenic introduced chemical elements in an urban river basin[J]. Science of the Total Environment, 2013, 452: 411-420
    [21] Hu W, Huang B, Zhao Y, et al. Organochlorine pesticides in soils from a typical alluvial plain of the Yangtze River Delta region, China[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(5): 561-566
    [22] 中华人民共和国环境保护部. GB 15618—1995 土壤环境质量标准[S]. 北京, 1995
    [23] Liu X, Zhang W, Hu Y, et al. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC-ICP-MS[J]. Microchemical Journal, 2013, 108: 38-45
    [24] Niazi N K, Singh B, Shah P. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy[J]. Environmental Science & Technology, 2011, 45(17): 7135-7142
  • 加载中
计量
  • 文章访问数:  1492
  • HTML全文浏览数:  1418
  • PDF下载数:  530
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-10-23
  • 刊出日期:  2015-06-15
孙婧, 马丽, 杨兆光, 王琳. 混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素[J]. 环境化学, 2015, 34(6): 1057-1063. doi: 10.7524/j.issn.0254-6108.2015.06.2014102305
引用本文: 孙婧, 马丽, 杨兆光, 王琳. 混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素[J]. 环境化学, 2015, 34(6): 1057-1063. doi: 10.7524/j.issn.0254-6108.2015.06.2014102305
SUN Jing, MA Li, YANG Zhaoguang, WANG Lin. Determination of heavy metal elements in various soils by microwave assisted extraction with acid mixture and ICP-MS[J]. Environmental Chemistry, 2015, 34(6): 1057-1063. doi: 10.7524/j.issn.0254-6108.2015.06.2014102305
Citation: SUN Jing, MA Li, YANG Zhaoguang, WANG Lin. Determination of heavy metal elements in various soils by microwave assisted extraction with acid mixture and ICP-MS[J]. Environmental Chemistry, 2015, 34(6): 1057-1063. doi: 10.7524/j.issn.0254-6108.2015.06.2014102305

混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素

  • 1. 中南大学化学化工学院, 环境与水资源研究中心, 长沙, 410083
基金项目:

国家重大科技专项-水体污染治理与控制(2013ZX07504-001)和环保公益性行业科研专项(201309052)资助.

摘要: 比较了硝酸(HNO3)、硝酸-盐酸(HNO3:HCl=3:1)、硝酸-盐酸-双氧水(HNO3:HCl:H2O2=3:1:1)和硝酸-盐酸-高氯酸(HNO3:HCl:HClO4=3:1:1)等4种消解液对土壤中铅(Pb)、镉(Cd)、砷(As)、铬(Cr)、镍(Ni)、铜(Cu)和锌(Zn)等7种重金属元素的萃取效率.结果表明,硝酸-盐酸-高氯酸混合液的萃取效果最好,硝酸-盐酸混合液次之.通过对6种土壤标准物质的分析发现,除了Cr之外,其他重金属元素在土壤中的混酸微波可提取态含量与总含量接近.土壤中的Cr有一部分是以铬铁矿的形式存在,在环境中相对较为稳定,采用混酸微波可提取态的Cr来评估其对环境的危害能够获得更加准确的结果.重金属与土壤的结合强弱与成土母质相关,冲积母质的土壤中Pb、Zn和Cu的结合较强,萃取相对较难,Cd、Ni和As与土壤的结合强弱则与成土母质关系不大.采用最优的消解液萃取矿区河流底泥和土壤中的重金属,ICP-MS分析结果表明,底泥中重金属含量较高,应为尾砂冲积而成,矿区周边的土壤也受到不同程度重金属的污染.

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回