不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响

汤智, 赵晓丽, 吴丰昌, 谭一新, 赵天慧, 秦宁, 钟燕平. 不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响[J]. 环境化学, 2015, 34(8): 1520-1528. doi: 10.7524/j.issn.0254-6108.2015.08.2015013005
引用本文: 汤智, 赵晓丽, 吴丰昌, 谭一新, 赵天慧, 秦宁, 钟燕平. 不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响[J]. 环境化学, 2015, 34(8): 1520-1528. doi: 10.7524/j.issn.0254-6108.2015.08.2015013005
TANG Zhi, ZHAO Xiaoli, WU Fengchang, TAN Yixin, ZHAO Tianhui, QIN Ning, ZHONG Yanping. The interaction between Fe3O4 nanoparticle and different source humic acid, and the influence on nanoparticle suspension[J]. Environmental Chemistry, 2015, 34(8): 1520-1528. doi: 10.7524/j.issn.0254-6108.2015.08.2015013005
Citation: TANG Zhi, ZHAO Xiaoli, WU Fengchang, TAN Yixin, ZHAO Tianhui, QIN Ning, ZHONG Yanping. The interaction between Fe3O4 nanoparticle and different source humic acid, and the influence on nanoparticle suspension[J]. Environmental Chemistry, 2015, 34(8): 1520-1528. doi: 10.7524/j.issn.0254-6108.2015.08.2015013005

不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响

  • 基金项目:

    国家自然科学基金(41222026, 21007063)资助.

The interaction between Fe3O4 nanoparticle and different source humic acid, and the influence on nanoparticle suspension

  • Fund Project:
  • 摘要: 对3种不同来源腐殖酸Suwannee、Elliott Soil、Leonardite在纳米四氧化三铁表面的吸附行为进行了对比研究并评估了其对纳米四氧化三铁悬浮/沉降性能的影响.结果显示,3种腐殖酸Suwannee、Elliott Soil、Leonardite在Fe3O4NP表面的吸附都能迅速达到平衡,符合Langmuir和Freundlich 吸附等温线模型,且吸附量随溶液pH 的上升逐渐减弱;相同条件下含有更多羧基、脂肪族的腐殖酸Suwannee在Fe3O4 NP表面的吸附量更大,腐殖酸Suwannee、Elliott Soil、Leonardite在25℃、pH=7.0条件下最大吸附量分别为91.41、66.11、52.57 mg·g-1;悬浮/沉降实验表明Fe3O4 NP在水体中聚集程度与溶液的pH有关,溶液pH偏离Fe3O4NP等电点时,Fe3O4 NP表面电位越高,越不容易聚集而沉降;水体中广泛存在的溶解性有机质可使Fe3O4 NP在水中的悬浮性增强,尤其是靠近等电点时效果更明显,与腐殖酸对Fe3O4NP空间位阻作用相关;通过对不同来源腐殖酸的结构和官能团进行分析发现,腐殖酸中含有的芳香性和羧酸结构对颗粒悬浮性的影响大于脂肪族结构,因此,腐殖酸Elliott Soil、Leonardite吸附到Fe3O4 NP表面后,Fe3O4 NP更容易在溶液中悬浮.因此,在富含腐殖酸的水体中,Fe3O4NP可以悬浮并不易沉降,其对水生生态系统的影响不容忽视.
  • 加载中
  • [1] 林道辉, 冀静, 田小利, 等. 纳米材料的环境行为与生物毒性[J]. 科学通报, 2009, 54(23): 3590-3604
    [2] Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichiacoli[J]. Environmental Science & Technology, 2008, 42(17): 6730-6735
    [3] Jiang W, Mashayekhi H, Xing B S, et al. Bacterial toxicity comparison between nano-and micro-scaled oxide particles[J]. Environmental Pollution, 2009, 157(5): 1619-1625
    [4] Li M H, Pokhrel X, Jin X, et al. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media[J]. Environmental Science & Technology, 2010, 45(2): 755-761
    [5] Wang N, Zhu L H, Wang D L, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2 [J]. Ultrasonics Sonochemistry, 2010, 17(3): 526-533
    [6] Saleh N, Phenrat T, Sirk K, et al. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface[J]. Nano Letters, 2005, 5(12): 2489-2494
    [7] Yao X Z, Guo Z, Yuan Q H, et al. Exploiting differential electrochemical stripping behaviors of Fe3O4 Nanocrystals toward Heavy metal ions by crystal cutting[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12203-12213
    [8] Mayo J T, Yavuz C, Yean S, et al. The effect of nanocrystalline magnetite size on arsenic removal [J]. Science and Technology of Advanced Materials, 2007, 8(1): 71-75
    [9] Hu J, Chen G H, Lo I. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles [J]. Water Research, 2005, 39(18): 4528-4536
    [10] Chung T H, Hsiao J K, Hsu S C, et al. Iron oxide nanoparticle-induced epidermal growth factor receptor expression in human stem cells for tumor therapy[J]. ACS nano, 2011, 5(12): 9807-9816
    [11] Ma P, Luo Q, Chen J E, et al. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice[J]. International Journal of Nanomedicine, 2012, 7: 4809-4818
    [12] Liu J F, Zhao Z S, Jiang G B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water [J]. Environmental Science & Technology, 2008, 42(18): 6949-6954
    [13] Zhu H, Han J, Xiao J Q, et al. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants[J]. Environ Monit, 2008, 10(6): 713-717
    [14] Hu J D,Zevi Y,Kou X M, et al. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions[J]. Science of the Total Environment, 408(16): 3477-3489
    [15] He Y T, Wan J, Tokunaga T. Kinetic stability of hematite nanoparticles: the effect of particle sizes[J]. Journal of Nanoparticle Research, 2008. 10(2): 321-332
    [16]
    [17] Illés E,Tombácz E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles[J]. Journal of Colloid and Interface Science, 2006, 295(1): 115-123
    [18] Niu H Y, Zhang D, Zhang S X, et al. Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole[J]. Journal of Hazardous Materials, 2011, 190(1): 559-565
    [19] Lin D H, Liu N, Yang K, et al. The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions[J]. Carbon, 2009, 47(12): 2875-2882
    [20] Hyung H, Kim J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42(12): 4416-4421
    [21] 窦森, 肖彦春, 张晋京. 土壤胡敏素各组分数量及结构特征初步研究[J]. 土壤学报, 2006, 43(6): 934-940
    [22] 肖彦春, 窦森. 土壤腐殖质各组分红外光谱研究[J]. 分析化学研究报告, 2007, 35(11): 1596-1600
    [23] Pan B, Xing B S. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(24): 9005-9013
    [24] Yang K, Lin D H, Xing B S. Interactions of humic acid with nanosized inorganic oxides[J]. Langmuir, 2009, 25(6): 3571-3576
    [25] Wang Z F, Guo H S, Yu Y L, et al. Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction[J]. Journal of Magnetism and Magnetic Materials, 2006, 302(2): 397-404
    [26] Zhao X L, Cai Y Q, Wu F C, et al. Determination of perfluorinated compounds in environmental water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry using surfactant-coated Fe3O4 magnetic nanoparticles as adsorbents[J]. Microchemical Journal, 2011, 98(2): 207-214
    [27] Kang S H, Xing B S. Humic acid fractionation upon sequential adsorption onto goethite[J]. Langmuir, 2008, 24(6): 2525-2531
    [28] Fu H B, Quan X, Chen S, et al. Interaction of humic substances and hematite: FTIR study [J]. Journal of Environmental Sciences, 2005, 17(1): 43-47
    [29] 吴其圣, 杨琛, 胡秀敏, 等. 环境因素对纳米二氧化钛颗粒在水体中沉降性能的影响[J]. 环境科学学报, 2012, 32(7): 1596-1603
    [30] Erhayem M, Sohn M. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles[J]. Science of the Total Environment, 2014, 470-471: 92-98
    [31] Erhayem M, Sohn M. Stability studies for titanium dioxide nanoparticles upon adsorption of Sumannee River humic and fulvic acids and natural organic matter[J]. Science of The Total Environment, 2014, 468-469: 249-257
    [32] Zhang Y, Chen Y, Westerhoff P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43(17): 4249-4257
    [33] Chappell M A, George A J, Dontsova K M, et al. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances[J]. Environmental Pollution, 2009, 157(4): 1081-1087
    [34] Pelley A J, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano-and microscale latex particles in saturated porous media[J]. Journal of Colloid and Interface Science, 2008, 321(1): 74-83
    [35] Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions[J]. Journal of Colloid and Interface Science, 2007, 309(1): 126-134
  • 加载中
计量
  • 文章访问数:  1649
  • HTML全文浏览数:  1547
  • PDF下载数:  651
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-30
  • 刊出日期:  2015-08-15
汤智, 赵晓丽, 吴丰昌, 谭一新, 赵天慧, 秦宁, 钟燕平. 不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响[J]. 环境化学, 2015, 34(8): 1520-1528. doi: 10.7524/j.issn.0254-6108.2015.08.2015013005
引用本文: 汤智, 赵晓丽, 吴丰昌, 谭一新, 赵天慧, 秦宁, 钟燕平. 不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响[J]. 环境化学, 2015, 34(8): 1520-1528. doi: 10.7524/j.issn.0254-6108.2015.08.2015013005
TANG Zhi, ZHAO Xiaoli, WU Fengchang, TAN Yixin, ZHAO Tianhui, QIN Ning, ZHONG Yanping. The interaction between Fe3O4 nanoparticle and different source humic acid, and the influence on nanoparticle suspension[J]. Environmental Chemistry, 2015, 34(8): 1520-1528. doi: 10.7524/j.issn.0254-6108.2015.08.2015013005
Citation: TANG Zhi, ZHAO Xiaoli, WU Fengchang, TAN Yixin, ZHAO Tianhui, QIN Ning, ZHONG Yanping. The interaction between Fe3O4 nanoparticle and different source humic acid, and the influence on nanoparticle suspension[J]. Environmental Chemistry, 2015, 34(8): 1520-1528. doi: 10.7524/j.issn.0254-6108.2015.08.2015013005

不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响

  • 1.  中国科学院广州地球化学研究所, 广州, 510640;
  • 2.  中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京, 100012;
  • 3.  中国科学院大学, 北京, 100049
基金项目:

国家自然科学基金(41222026, 21007063)资助.

摘要: 对3种不同来源腐殖酸Suwannee、Elliott Soil、Leonardite在纳米四氧化三铁表面的吸附行为进行了对比研究并评估了其对纳米四氧化三铁悬浮/沉降性能的影响.结果显示,3种腐殖酸Suwannee、Elliott Soil、Leonardite在Fe3O4NP表面的吸附都能迅速达到平衡,符合Langmuir和Freundlich 吸附等温线模型,且吸附量随溶液pH 的上升逐渐减弱;相同条件下含有更多羧基、脂肪族的腐殖酸Suwannee在Fe3O4 NP表面的吸附量更大,腐殖酸Suwannee、Elliott Soil、Leonardite在25℃、pH=7.0条件下最大吸附量分别为91.41、66.11、52.57 mg·g-1;悬浮/沉降实验表明Fe3O4 NP在水体中聚集程度与溶液的pH有关,溶液pH偏离Fe3O4NP等电点时,Fe3O4 NP表面电位越高,越不容易聚集而沉降;水体中广泛存在的溶解性有机质可使Fe3O4 NP在水中的悬浮性增强,尤其是靠近等电点时效果更明显,与腐殖酸对Fe3O4NP空间位阻作用相关;通过对不同来源腐殖酸的结构和官能团进行分析发现,腐殖酸中含有的芳香性和羧酸结构对颗粒悬浮性的影响大于脂肪族结构,因此,腐殖酸Elliott Soil、Leonardite吸附到Fe3O4 NP表面后,Fe3O4 NP更容易在溶液中悬浮.因此,在富含腐殖酸的水体中,Fe3O4NP可以悬浮并不易沉降,其对水生生态系统的影响不容忽视.

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回