防污剂Irgarol 1051在水环境中的生态效应

邓祥元, 成婕, 高坤, 王长海. 防污剂Irgarol 1051在水环境中的生态效应[J]. 环境化学, 2015, 34(9): 1735-1740. doi: 10.7524/j.issn.0254-6108.2015.09.2015032201
引用本文: 邓祥元, 成婕, 高坤, 王长海. 防污剂Irgarol 1051在水环境中的生态效应[J]. 环境化学, 2015, 34(9): 1735-1740. doi: 10.7524/j.issn.0254-6108.2015.09.2015032201
DENG Xiangyuan, CHENG Jie, GAO Kun, WANG Changhai. Ecological impacts of antifouling agent Irgarol 1051 in aquatic environment[J]. Environmental Chemistry, 2015, 34(9): 1735-1740. doi: 10.7524/j.issn.0254-6108.2015.09.2015032201
Citation: DENG Xiangyuan, CHENG Jie, GAO Kun, WANG Changhai. Ecological impacts of antifouling agent Irgarol 1051 in aquatic environment[J]. Environmental Chemistry, 2015, 34(9): 1735-1740. doi: 10.7524/j.issn.0254-6108.2015.09.2015032201

防污剂Irgarol 1051在水环境中的生态效应

  • 基金项目:

    国家自然科学基金(31200381)

    中国博士后科学基金(2013M531370,2014T70532)

    国家海洋局近岸海域生态环境重点实验室资助项目(201209)资助.

Ecological impacts of antifouling agent Irgarol 1051 in aquatic environment

  • Fund Project:
  • 摘要: Irgarol 1051是目前使用最多的海洋防污剂之一,已在世界范围内的自然水体中检测到Irgarol 1051的存在,并在新加坡海域检测到其在水环境中的最高浓度为4.2 μg·L-1.它的存在严重影响着非目标生物的生存和生长,且可改变生态群落的种群组成与丰度,严重威胁水生生态系统的健康和安全.本文对Irgarol 1051的主要性质、环境行为及其生态效应进行综述,以期为进一步研究打下基础.
  • 加载中
  • [1] 周晓见, 董夏伟, 缪莉, 等. 海洋防污损涂料添加剂Irgarol 1051环境科学研究进展[J]. 环境科技, 2011, 24(3):64-68
    [2] Readman J W. Development, occurrence and regulation of antifouling paint biocides:Historical review and future trends [M]. Konstantinou IK (ed). Antifouling Paint Biocides, Berlin:Springer-Verlag, 2006, 1-15
    [3] Alzieu C. Tributyltin:Case study of a chronic contaminant in the coastal environment[J]. Ocean and Coastal Management, 1998, 40(1):23-36
    [4] Turner A. Marine pollution from antifouling paint particles[J]. Mar Pollut Bull, 2010, 60(2):159-171
    [5] Wendt I, Arrhenius A, Backhaus T, et al. Extreme Irgarol tolerance in an Ulva lactuca L. population on the Swedish west coast[J]. Mar Pollut Bull, 2013, 76(1-2):360-364
    [6] 许凤玲, 蔺存国, 于泓先, 等. 海洋防污剂及其缓控释技术进展[J]. 材料开发与应用, 2013, 28(3):119-122
    [7] Zhao W W, Wang X L. Antifouling based on biocides:From toxic to green//Zhou F (Ed). Antifouling Surfaces and Materials [M]. Berlin:Springer publisher, 2014, 105-135
    [8] Kim N S, Shim W J, Yim U H, et al. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea[J]. Mar Pollut Bull, 2014, 78(1-2):201-208
    [9] Thomas K V, Brooks S. The environmental fate and effects of antifouling paint biocides[J]. Biofouling, 2010, 26(1):73-88
    [10] Lam K H, Lam M H W, Lam P K S, et al. Identification and characterization of a new degradation product of Irgarol-1051 in mercuric chloride-catalyzed hydrolysis reaction and in coastal waters[J]. Mar Pollut Bull, 2004, 49:361-367
    [11] Readman J W, Liong L W K, Grondin D, et al. Coastal waters contamination from a triazine herbicide used in antifouling paints[J]. Environ Sci Technol, 1993, 27:1940-1942
    [12] Gardinali P R, Plasencia M, Mack S, et al. Occurrence of Irgarol 1051 in coastal waters from Biscayne bay, Florida, USA[J]. Mar Pollut Bull, 2002, 44:781-788
    [13] Gardinali P R, Plasencia M D, Maxey C. Occurrence and transport of irgarol 1051 and its major metabolite in coastal water from South Florida[J]. Mar Pollut Bull, 2004, 49:1072-1083
    [14] Okamura H, Aoyama I, Ono Y, et al. Antifouling herbicides in the coastal waters of western Japan[J]. Mar Pollut Bull, 2003, 47:59-67
    [15] Basheer C, Tan K S, Lee H K. Organotin and lrgarol 1051 contamination in Singapore coastal waters[J]. Mar Pollut Bull, 2002, 44(7):697-703
    [16] Lambert S J, Thomas K V, Davy A J. Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes[J]. Chemosphere, 2006, 63:734
    [17] Boxall A B A. Environmental risk assessment of antifouling biocides[J]. Chimica Oggi, 2004, 22(6):46-48
    [18] Rogers H R, Watts C D, Johnson I. Comparative predictions of Irgarol 1051 and atrazine fate and toxicity[J]. Environ Technol, 1996, 17:553-557
    [19] Tóth S, Becker-van Slooten K,Spack L, et al. Irgarol 1051, an antifouling compound in freshwater, sediment, and biota of Lake Geneva[J]. Bull Environ Toxicol Chem, 1996, 57:426-433
    [20] Okamura H, Aoyama I, Liu D, et al. Photodegradation of Irgarol 1051 in water[J]. J Environ Sci Health B, 1999, 34:225-238
    [21] Liu D, Pacepavicius G J, Maguire R J, et al. Mercuric chloride-catalyzed hydrolysis of the new antifouling compound Irgarol 1051[J]. Water Res, 1999, 33:155-163
    [22] Lam K H, Lei N Y, Tsang V W, et al. A mechanistic study on the photodegradation of Irgarol-1051 in natural seawater[J]. Mar Pollut Bull, 2009, 58(2):272-279
    [23] Arrhenius A, Backhaus T, Gronvall F, et al. Effects of three antifouling agents on algal communities and algal reproduction:Mixture toxicity studies with TBT, Irgarol, and Sea-Nine[J]. Arch Environ Contam Toxicol, 2006, 50(3):335-345
    [24] Shaw C M, Lam P K, Mueller J F. Photosystem Ⅱ herbicide pollution in Hong Kong and its potential photosynthetic effects on corals[J]. Mar Pollut Bull, 2008, 57(6-12):473-478
    [25] Deng X Y, Gao K, Sun J L. Physiological and biochemical responses of Synechococcus sp. PCC7942 to Irgarol 1051 and diuron[J]. Aquat Toxicol, 2012, 122-123:113-119
    [26] Eriksson K M, Clarke A K, Franzen L G, et al. Community-level analysis of psbA gene sequences and Irgarol tolerance in marine periphyton[J]. Appl Environ Microb, 2009, 75(4):897-906
    [27] Chesworth J C, Donkin M E, Brown M T. The interactive effects of the antifouling herbicides Irgarol 1051 and diuron on the seagrass Zostera marina (L.)[J]. Aquat Toxicol, 2004, 66:293-305
    [28] Seery C R, Gunthorpe L, Ralph P J. Herbicide impact on Hormosira Banksii gametes measured by fluorescence and germination bioassays[J]. Environ Pollut, 2006, 140:43-51
    [29] Gatidou G, Thomaidis N S. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays[J]. Aquat Toxicol, 2007, 85:184-191
    [30] Buma A G J, Sjollema S B, van de Poll W H, et al. Impact of the antifouling agent Irgarol 1051 on marine phytoplankton species[J]. J Sea Res, 2009, 61(3):133-139
    [31] Mohr S, Schröder H, Feibicke M, et al. Long-term effects of the antifouling booster biocide Irgarol 1051 on periphyton, plankton and ecosystem function in freshwater pond mesocosms[J]. Aquat Toxicol, 2008, 90(2):109-120
    [32] Zhang A Q, Leung K M Y, Kwok K W H, et al. Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers[J]. Mar Pollut Bull, 2008, 57:575-586
    [33] Bao V W W, Leung K M Y, Qiu J W, et al. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species[J]. Mar Pollut Bull, 2011, 62(5):1147-1151
    [34] Kottuparambil S, Lee S, Han T. Single and interactive effects of the antifouling booster herbicides diuron and Irgarol 1051 on photosynthesis in the marine cyanobacterium, Arthrospira maxima[J]. Toxicol Environ Health Sci, 2013, 5(2):71-81
    [35] Bellas J. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates[J]. Sci Total Environ, 2006, 367:573-585
    [36] Nyström B, Becker-van Slooten K, BérardA,et al. Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva[J]. Water Res, 2002, 36(8):2020-2028
    [37] Bérard A, Dorigo U, Mercier I, et al. Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva[J]. Chemosphere, 2003, 53(8):935-944
    [38] Dorigo U, Bourrain X, Bérard A, et al. Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient[J]. Sci Total Environ, 2004, 318(1/3):101-114
    [39] Blanck H, Eriksson K M, Grönvall F, et al. A retrospective analysis of contamination and periphyton PICT patterns for the antifoulantirgarol 1051, around a small marina on the Swedish west coast[J]. Mar Pollut Bull, 2009, 58(2):230-237
  • 加载中
计量
  • 文章访问数:  917
  • HTML全文浏览数:  859
  • PDF下载数:  537
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-22
  • 刊出日期:  2015-09-15
邓祥元, 成婕, 高坤, 王长海. 防污剂Irgarol 1051在水环境中的生态效应[J]. 环境化学, 2015, 34(9): 1735-1740. doi: 10.7524/j.issn.0254-6108.2015.09.2015032201
引用本文: 邓祥元, 成婕, 高坤, 王长海. 防污剂Irgarol 1051在水环境中的生态效应[J]. 环境化学, 2015, 34(9): 1735-1740. doi: 10.7524/j.issn.0254-6108.2015.09.2015032201
DENG Xiangyuan, CHENG Jie, GAO Kun, WANG Changhai. Ecological impacts of antifouling agent Irgarol 1051 in aquatic environment[J]. Environmental Chemistry, 2015, 34(9): 1735-1740. doi: 10.7524/j.issn.0254-6108.2015.09.2015032201
Citation: DENG Xiangyuan, CHENG Jie, GAO Kun, WANG Changhai. Ecological impacts of antifouling agent Irgarol 1051 in aquatic environment[J]. Environmental Chemistry, 2015, 34(9): 1735-1740. doi: 10.7524/j.issn.0254-6108.2015.09.2015032201

防污剂Irgarol 1051在水环境中的生态效应

  • 1.  江苏科技大学生物技术学院, 镇江, 212018;
  • 2.  南京农业大学江苏省海洋生物学重点实验室, 南京, 210095
基金项目:

国家自然科学基金(31200381)

中国博士后科学基金(2013M531370,2014T70532)

国家海洋局近岸海域生态环境重点实验室资助项目(201209)资助.

摘要: Irgarol 1051是目前使用最多的海洋防污剂之一,已在世界范围内的自然水体中检测到Irgarol 1051的存在,并在新加坡海域检测到其在水环境中的最高浓度为4.2 μg·L-1.它的存在严重影响着非目标生物的生存和生长,且可改变生态群落的种群组成与丰度,严重威胁水生生态系统的健康和安全.本文对Irgarol 1051的主要性质、环境行为及其生态效应进行综述,以期为进一步研究打下基础.

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回