聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能

田忠卫, 向敏, 赵文艳, 蔡进军. 聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能[J]. 环境化学, 2016, 35(5): 1007-1013. doi: 10.7524/j.issn.0254-6108.2016.05.2015112003
引用本文: 田忠卫, 向敏, 赵文艳, 蔡进军. 聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能[J]. 环境化学, 2016, 35(5): 1007-1013. doi: 10.7524/j.issn.0254-6108.2016.05.2015112003
TIAN Zhongwei, XIANG Min, ZHAO Wenyan, CAI Jinjun. High-surface-area microporous carbons derived from polymers carbonization and their CO2 adsorption properties[J]. Environmental Chemistry, 2016, 35(5): 1007-1013. doi: 10.7524/j.issn.0254-6108.2016.05.2015112003
Citation: TIAN Zhongwei, XIANG Min, ZHAO Wenyan, CAI Jinjun. High-surface-area microporous carbons derived from polymers carbonization and their CO2 adsorption properties[J]. Environmental Chemistry, 2016, 35(5): 1007-1013. doi: 10.7524/j.issn.0254-6108.2016.05.2015112003

聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能

  • 基金项目:

    国家自然科学基金(21506184),中国博士后基金(2015M572258),湘潭大学博士启动项目(15QDZ13)和中联环SWMES教育部重点实验室开放基金(SWMES2015-15)资助.

High-surface-area microporous carbons derived from polymers carbonization and their CO2 adsorption properties

  • Fund Project: Supported by the National Natural Science Foundation of China(21506184), China Postdoctoral Science Foundation(2015M572258), PhD Startup Foundation of Xiangtan University (15QDZ13), SWMES Key Lab Foundation of Ministry of Education of China, Tsinghua University (SWMES2015-15).
  • 摘要: 以商业化副产物聚偏二氯乙烯(PVDC)树脂粉末为碳源制备炭材料并研究了298 K时CO2的吸附性能.研究结果表明,PVDC树脂直接碳化得到比表面积为1220 m2·g-1且孔径小于1.5 nm的纯微孔炭材料,CO2在1 bar下的吸附量高达3.97 mmol·g-1.在此基础上用KOH对微孔炭材料进行活化处理,发现KOH活化在增大炭材料比表面积的同时能保持高微孔率,但1 bar下的CO2吸附量适度降低.高压下CO2吸附量与炭材料的比表面积呈正比,20 bar时在比表面积为2150 m2·g-1样品上的吸附量为18.27 mmol·g-1,这与其他类型高比表面积吸附剂相比都处于较高水平.
  • 加载中
  • [1] CHEN B,ZHU Y,XIA Y. Controlled in situ synthesis of graphene oxide/zeolitic imidazolate framework composites with enhanced CO2 uptake capacity[J]. RSC Advances,2015,5: 30464-30471.
    [2] VOSS C. CO2 removal by PSA: an industrial view on opportunities and challenges[J]. Adsorption,2014,20: 295-299.
    [3] ZHANG J,YAO Z Z,XIANG S,et al. Perspective of microporous metal-organic frameworks for CO2 capture and separation[J]. Energy & Environmental Science,2014,7: 2868-2899.
    [4] LI P Z,ZHAO Y. Nitrogen-rich porous adsorbents for CO2 capture and storage[J]. Chemistry-An Asian Journal,2013,8: 1680-1691.
    [5] ZHU B,LI K,LIU J,et al. Nitrogen-enriched and hierarchically porous carbon macro-spheres-ideal for large-scale CO2 capture[J]. Journal of Materials Chemistry A,2014,2: 5481-5489.
    [6] HAO G P,LI W C,QIAN D,et al.,Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society,2011,133: 11378-11388.
    [7] SALEH M,TIWARI J N,KEMP K C,et al. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials[J]. Environmental & Science Technology,2013,47: 5467-5473.
    [8] WANG J,SENKOVSKA I,OSCHATZ M,et al. Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture[J]. Journal of Materials Chemistry A,2013,1: 10951-10961.
    [9] ZHENG D,JIA M,XU B,et al. The simple preparation of a hierarchical porous carbon with high surface area for high performance supercapacitors[J]. New Carbon Materials,2013,28: 151-155.
    [10] XU B,WU F,MU D,et al. Activated carbon prepared from PVDC by NaOH activation as electrode materials for high performance EDLCs with non-aqueous electrolyte[J]. International Journal of Hydrogen Energy,2010,35: 632-637.
    [11] ENDO M,KIM Y J,TAKEDA T,et al. Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte[J]. Journal of the Electrochemical Society,2001,148: A1135-A1140.
    [12] XU B,WU F,CHEN S,et al. A simple method for preparing porous carbon by PVDC pyrolysis[J]. Colloids and Surfaces A,2008,316: 85-88.
    [13] REN W,LI F,TAN P,et al. Raman evidence for atomic correlation between the two constituent tubes in double-walled carbon nanotubes[J]. Physical Review B,2006,73: 115430.
    [14] SING K S W,EVERETT D H,HAUL R,et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Applied Chemistry,1982,54: 2201-2218.
    [15] DE SOUZA L K C,WICKRAMARATNE N,ELLO A S,et al. Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation[J]. Carbon,2013,65: 334-340.
    [16] SAHA D,BAO Z,JIA F,et al. Adsorption of CO2,CH4,N2O,and N2 on MOF-5,MOF-177,and Zeolite 5A[J]. Environmental & Science Technology,2010,44: 1820-1826.
    [17] WAHBY A,RAMOS-FERNÁNDEZ J M,MARTÍNEZ-ESCANDELL M,et al.High-surface-area carbon molecular sieves for selective CO2 adsorption[J]. Chem Sus Chem,2010,3: 974-981.
    [18] SEVILLA M,FUERTES A B,Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science,2011,4: 1765-1771.
    [19] MASON J A,VEENSTRA M,LONG J R. Evaluating metal-organic frameworks for natural gas storage[J]. Chemical Sciences,2014,5: 32-51.
    [20] YOUN H K,KIM J,CHANDRASEKAR G,et al. High pressure carbon dioxide adsorption on nanoporous carbons prepared by Zeolite Y templating[J]. Materials Letters,2011,65: 1772-1774.
  • 加载中
计量
  • 文章访问数:  968
  • HTML全文浏览数:  880
  • PDF下载数:  727
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-20
  • 刊出日期:  2016-05-15
田忠卫, 向敏, 赵文艳, 蔡进军. 聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能[J]. 环境化学, 2016, 35(5): 1007-1013. doi: 10.7524/j.issn.0254-6108.2016.05.2015112003
引用本文: 田忠卫, 向敏, 赵文艳, 蔡进军. 聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能[J]. 环境化学, 2016, 35(5): 1007-1013. doi: 10.7524/j.issn.0254-6108.2016.05.2015112003
TIAN Zhongwei, XIANG Min, ZHAO Wenyan, CAI Jinjun. High-surface-area microporous carbons derived from polymers carbonization and their CO2 adsorption properties[J]. Environmental Chemistry, 2016, 35(5): 1007-1013. doi: 10.7524/j.issn.0254-6108.2016.05.2015112003
Citation: TIAN Zhongwei, XIANG Min, ZHAO Wenyan, CAI Jinjun. High-surface-area microporous carbons derived from polymers carbonization and their CO2 adsorption properties[J]. Environmental Chemistry, 2016, 35(5): 1007-1013. doi: 10.7524/j.issn.0254-6108.2016.05.2015112003

聚合物碳化制备高比表面积微孔炭材料及其CO2吸附性能

  • 1.  湘潭大学化工学院, 湘潭, 411105;
  • 2.  固体废物处理与环境安全教育部重点实验室, 清华大学, 北京, 100084
基金项目:

国家自然科学基金(21506184),中国博士后基金(2015M572258),湘潭大学博士启动项目(15QDZ13)和中联环SWMES教育部重点实验室开放基金(SWMES2015-15)资助.

摘要: 以商业化副产物聚偏二氯乙烯(PVDC)树脂粉末为碳源制备炭材料并研究了298 K时CO2的吸附性能.研究结果表明,PVDC树脂直接碳化得到比表面积为1220 m2·g-1且孔径小于1.5 nm的纯微孔炭材料,CO2在1 bar下的吸附量高达3.97 mmol·g-1.在此基础上用KOH对微孔炭材料进行活化处理,发现KOH活化在增大炭材料比表面积的同时能保持高微孔率,但1 bar下的CO2吸附量适度降低.高压下CO2吸附量与炭材料的比表面积呈正比,20 bar时在比表面积为2150 m2·g-1样品上的吸附量为18.27 mmol·g-1,这与其他类型高比表面积吸附剂相比都处于较高水平.

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回