腐殖质氧化还原官能团测定新方法

张雪, 丁鑫, 杨浈, 姜杰. 腐殖质氧化还原官能团测定新方法[J]. 环境化学, 2016, 35(10): 2106-2116. doi: 10.7524/j.issn.0254-6108.2016.10.2016030703
引用本文: 张雪, 丁鑫, 杨浈, 姜杰. 腐殖质氧化还原官能团测定新方法[J]. 环境化学, 2016, 35(10): 2106-2116. doi: 10.7524/j.issn.0254-6108.2016.10.2016030703
ZHANG Xue, DING Xin, YANG Zhen, JIANG Jie. New methods for the determination of redox functional groups in humic substances[J]. Environmental Chemistry, 2016, 35(10): 2106-2116. doi: 10.7524/j.issn.0254-6108.2016.10.2016030703
Citation: ZHANG Xue, DING Xin, YANG Zhen, JIANG Jie. New methods for the determination of redox functional groups in humic substances[J]. Environmental Chemistry, 2016, 35(10): 2106-2116. doi: 10.7524/j.issn.0254-6108.2016.10.2016030703

腐殖质氧化还原官能团测定新方法

  • 基金项目:

    国家自然科学基金(21307004)资助.

New methods for the determination of redox functional groups in humic substances

  • Fund Project: Supported by the National Natural Science Fund (21307004).
  • 摘要: 腐殖质是一种主要由碳、氢、氧、氮等元素构成的具有氧化还原活性的有机质,存在丰富的官能团,其中以酚基和羧基含量最为丰富.腐殖质的氧化还原能力与氧化还原官能团的数目和种类有关.一直以来醌基被认为是腐殖质最重要的氧化还原官能团,对于醌基的测定是研究氧化还原官能团的重点.对于腐殖质氧化还原官能团的研究以化学、电化学和微生物等基本方法为主.本文尝试将这些方法与光谱法(如三维荧光光谱法、红外光谱法、核磁共振光谱法和电子自旋共振波谱法)相结合,不仅可以量化腐殖质氧化还原能力,还能对腐殖质氧化还原官能团具体组成有完整的解释,以便全面了解腐殖质的氧化还原官能团和氧化还原活性.
  • 加载中
  • [1] BRADLEY P M, CHAPELLE F H, LOVLEY D R. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene[J]. Applied and Environmental Microbiology, 1998, 64(8): 3102-3105.
    [2] STEVENSON F J. Humus chemistry: Genesis, composition, reactions[M]. 2nd Edition. New York: Wiley, 1994:17.
    [3] 窦森. 土壤有机质[M]. 北京:高等教育出版社, 2010: 149-151. DOU S. Soil organic matter[M]. Beijing: Higher Education Press, 2010: 149

    -151(in Chinese).

    [4] SERUDO R L, OLIVEIRA L C, ROCHA J C, et al. Reduction capability of soil humic substances from the rio negro basin, brazil, towards Hg(Ⅱ) studied by a multimethod approach and principal component analysis (PCA)[J]. Geoderma, 2007, 138(3-4): 229-236.
    [5] AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel Electrochemical approach to assess the redox properties of humic substances[J]. Environmental Science & Technology, 2010, 44(1): 87-93.
    [6] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19): 2984-2989.
    [7] RITCHIE J D, PERDUE E M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter[J]. Geochimica Et Cosmochimica Acta, 2003, 67(1):85-96.
    [8] CHEN J, GU B H, ROYER R A, et al. The roles of natural organic matter in chemical and microbial reduction of ferric iron[J]. Science of the Total Environment, 2003, 307(1-3): 167-178.
    [9] NOPAWAN R, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environmental Science & Technology, 2007, 41(22): 7844-7850.
    [10] 姜杰, 杨浈, 任谦, 等. 土壤腐殖质氧化还原电位及其相应电子转移能力分布[J]. 环境化学, 2015, 34(2):219-224.

    JIANG J, YANG Z, REN Q, et al. Distribution of soil humic acids redox potentials and corresponding electron transfer amounts[J]. Environmental Chemistry, 2015, 34(2): 219-224(in Chinese).

    [11] LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448.
    [12] JIANG J AND KAPPLER A. Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling[J]. Environmental Science & Technology, 2008, 42(10): 3563-3569.
    [13] JIANG J, BAUER I, PAUL A, et al. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science & Technology, 2009, 43(10): 3639-3645.
    [14] FREDRICKSON J K, ROMINE M F, BELIAEV A S, et al. Towards environmental systems biology of Shewanella[J]. Nature Reviews Microbiology, 2008, 6(8): 592-603.
    [15] BELIAEV A S, SAFFARINI D A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe (Ⅲ) and Mn (Ⅳ) reduction[J]. Journal of Bacteriology, 1998, 180(23): 6292-6297.
    [16] YANG Y, CHEN J, QIU D, et al. Roles of UndA and MtrC of Shewanella putrefaciens W3-18-1 in iron reduction[J]. Bmc Microbiology, 2013, 13(1): 496-498.
    [17] MYERS J M, MYERS C R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone[J]. Journal of Bacteriology, 2000, 182(1): 67-75.
    [18] RODEN E, KAPPLER A, BAUER L, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances[J]. Nature Geoscience, 2010, 74(12): 417-421.
    [19] LIES D P, HERNANDEZ M E, KAPPLER A, et al. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms[J]. Applied and Environmental Microbiology, 2005, 71(8): 4414-4426.
    [20] SUYAMA A, SERA N, IWAKIRI R, et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy[J]. Soil Science, 1991, 152(4):259-271.
    [21] 夏玉宇. 化验员实用手册(第2版)[M]. 北京:化学工业出版社, 2010: 678-679.
    [22] 王波, 刘德军, 姚军, 等. 泥炭土中腐殖酸的提纯和表征研究[J]. 辐射防护, 2009, 29(3): 172-179.

    WANG B, LIU D J, YAO J, et al. Isolation and characterization of humic acids from peat soil[J]. Radiation Protection, 2009, 29(3): 172-179(in Chinese).

    [23] 张军政,杨谦,席北斗,等. 垃圾填埋渗滤液溶解性有机物组分的光谱学特性研究[J]. 光谱学与光谱分析, 2008, 28(11): 2583-2587.

    ZHANG J Z, YANG Q, XI B D, et al. Study on spectral characteristic of dissolved organic matter fractions extracted from municipal solid waste landfill leachate[J]. Spectroscopy and Spectral Analysis, 2008, 28(11): 2583-2587(in Chinese).

    [24] 刘新超, 李俊, 谢丽,等. 腐殖酸表征方法研究进展[J]. 净水技术, 2009, 28(3):6-9.

    LIU X C, LI J, XIE L, et al. Characterization methods of humic acid: A review[J]. Water Purification Technology, 2009, 28(3):6-9(in Chinese).

    [25] 何海军, 瞿文川, 钱君龙. 湖泊沉积物中腐殖酸的紫外-可见分光光度法测定[J]. 分析测试技术与仪器, 1996, 2(1): 14-18.

    HE H J, QU W C, QIAN J L. Determination of humic acid in lake sediment by UV-VIS absorbance spectrophotometer[J]. Analysis and Testing Technology and Instruments, 1996, 2(1): 14-18(in Chinese).

    [26] TESAR M, PRANTL R, LECHNER P. Application of FTIR for assessment of the biological stability of landfilled municipal solid waste (MSW) during in situ aeration[J]. Journal of Environmental Monitoring, 2007, 9(1):111-120.
    [27] TINTNER J, SMIDT E, BOHMB K, et al. Risk assessment of an old landfill regarding the potential of gaseous emissions-A case study based on bioindication, FT-IR spectroscopy and thermal analysis[J]. Waste Management, 2012, 32(12):2418-2425.
    [28] 胡学斌,吉芳英,黎司,等. 三峡库区土壤腐殖质的振动光谱研究[J].光谱学与光谱分析,2010,30(5):1376-1380.

    HU X B, JI F Y, LI S, et al. Study of vibrational spectra of humic substance in soils from the Gorges Reservoir Area[J]. Spectroscopy and Spectral Analysis, 2010, 30(5):1376-1380(in Chinese).

    [29]
    [30] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J].Marine Chemistry,1996, 51(4): 325-346.
    [31] 张彩华. 光谱法在腐殖质研究中的应用进展[J]. 光谱实验室, 2011, 28(2): 693-696.

    ZHANG C H. Advance of application of spectroscopy in humic substance[J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(2): 693-696(in Chinese).

    [32] BEALE D J, PORTER N A, RODDICK F A. The interaction between natural organic matter in raw waters and pesticide residues: A three dimensional excitation-emission matrix (3DEEM) fluorescence investigation[J].Water Science & Technology,2013,67(11):2428-2436.
    [33] DATTA C, GHOSH K, MUKHERJEE S K. Fluorescence excitation spectra of different fractions of humus[J]. Journal-Indian Chemical Society, 1971, 48: 279-287.
    [34] KLAPPER L, MCKNIGHT D M, FULTON J R, et al. Fulvic acid oxidation state detection using fluorescence spectroscopy[J]. Environmental Science & Technology, 2002, 36(14):3170-3175.
    [35] CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J].Environmental Science & Technology, 2005, 39(21):8142-8149.
    [36] MACALADY D L, WALTON-DAY K. New light on a aark subject: On the use of fluorescence data to deduce redox states of natural organic matter (NOM)[J]. Aquatic Sciences, 2009, 71(2):135-143.
    [37] 姜杰, 李黎, 孙国新. 基于三维荧光光谱特征研究土壤腐殖质氧化还原特性[J].环境化学, 2012, 31(12):2002-2007.

    JIANG J, LI L, SUN G X. Investigation of redox activities of soil humic acids using 3D excitation emission matrix fluorescence spectroscopy[J]. Environmental Chemistry, 2012, 31(12):2002-2007(in Chinese).

    [38] YANG Z, DU M C, JIANG J. Reducing capacities and redox potentials of humic substances extracted from sewage sludge[J]. Chemosphere, 2015, 144: 902-908.
    [39] 席北斗, 魏自民, 赵越, 等. 垃圾渗滤液水溶性有机物荧光谱特性研究[J]. 光谱学与光谱分析, 2008, 28(11):2605-2608.

    XI B D, WEI Z M, ZHAO Y, et al. Study on fluorescence characteristic of dissolved organic matter from municipal solid waste landfill leachate. Spectroscopy and Spectral Analysis, 2008, 28(11): 2605-2608.

    [40] HUDSON N, BAKER A, WARDB D, et al. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England[J]. Science of The Total Environment, 2008, 391(1): 149-158.
    [41] BAKER A, CURRY M. Fluorescence of leachates from three contrasting landfills[J]. Water Research, 2004, 38(10): 2605-2613.
    [42] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic materi-als and aromaticity[J]. Limnology & Oceanography, 2001, 46(1): 38-48.
    [43] WU F, TANOUE E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters[J]. Environmental Science & Technology,2001, 35(18): 3646-3652.
    [44] 李文芳,卜晓英,黄美娥,等. 土壤腐殖质的降解及其结构[J]. 安徽农业科学, 2005, 33(3): 494-495.

    LI W F, BU X Y, HUANG M E, et al. Elementary exploration of separation, extraction and structural analysis of soil humus[J]. Journal of Anhui Agricultural Sciences, 2005, 33(3): 494-495(in Chinese).

    [45] THORN K A, ARTERBURN J B, MIKITA M A. Nitrogen-15 and carbon-13 NMR investigation of hydroxylamine-derivatized humic substances[J]. Environmental Science & Technology, 1992, 26(1): 107-116.
    [46] SENESI N. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals: Part Ⅱ. The fluorescence spectroscopy approach[J]. Analytica Chimica Acta, 1990, 232: 77-106.
    [47] WILSON S A, WEBER J H. Electron spin resonance analysis of semiquinone free radicals of aquatic and soil fulvic and humic acids[J]. Analytical Letters, 1977, 10(1): 75-84.
    [48] SENESI N, SCHNITZER M. Effects of pH, reaction time, chemical reduction and irradiation on ESR spectra of fulvic acid[J]. Soil Science, 1977, 123(4): 224-234.
    [49] NURMI J T, TRATNYEK P G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles[J]. Environmental Science & Technology, 2002, 36(4):617-624.
    [50] FIMMEN R L, CORY R M, CHIN Y P, et al. Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter[J]. Geochimica et Cosmochimica Acta, 2007, 71(12):3003-3015.
    [51] KAPPLER A, HADERLEIN S B. Natural organic matter as reductant for chlorinated aliphatic pollutants[J]. Environmental Science & Technology, 2003, 37(12): 2714-2719.
    [52] AESCHBACHER M, VERGARI D, SCHWARZENBACH R P, et al. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids[J]. Environmental Science & Technology, 2011, 45(19):8385-8394.
    [53] AESCHBACHER M, GRAF C, SCHWARZENBACH R P, et al. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids[J]. Environmental Science & Technology, 2012, 46(9):4916-4925.
    [54] KLÜPFEL L, PIEPENBROCK A, KAPPLER A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments[J]. Nature Geoscience, 2014, 7(3): 195-200.
  • 加载中
计量
  • 文章访问数:  2082
  • HTML全文浏览数:  2007
  • PDF下载数:  699
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-07
  • 刊出日期:  2016-10-15
张雪, 丁鑫, 杨浈, 姜杰. 腐殖质氧化还原官能团测定新方法[J]. 环境化学, 2016, 35(10): 2106-2116. doi: 10.7524/j.issn.0254-6108.2016.10.2016030703
引用本文: 张雪, 丁鑫, 杨浈, 姜杰. 腐殖质氧化还原官能团测定新方法[J]. 环境化学, 2016, 35(10): 2106-2116. doi: 10.7524/j.issn.0254-6108.2016.10.2016030703
ZHANG Xue, DING Xin, YANG Zhen, JIANG Jie. New methods for the determination of redox functional groups in humic substances[J]. Environmental Chemistry, 2016, 35(10): 2106-2116. doi: 10.7524/j.issn.0254-6108.2016.10.2016030703
Citation: ZHANG Xue, DING Xin, YANG Zhen, JIANG Jie. New methods for the determination of redox functional groups in humic substances[J]. Environmental Chemistry, 2016, 35(10): 2106-2116. doi: 10.7524/j.issn.0254-6108.2016.10.2016030703

腐殖质氧化还原官能团测定新方法

  • 1. 北京林业大学环境科学与工程学院, 北京, 100083
基金项目:

国家自然科学基金(21307004)资助.

摘要: 腐殖质是一种主要由碳、氢、氧、氮等元素构成的具有氧化还原活性的有机质,存在丰富的官能团,其中以酚基和羧基含量最为丰富.腐殖质的氧化还原能力与氧化还原官能团的数目和种类有关.一直以来醌基被认为是腐殖质最重要的氧化还原官能团,对于醌基的测定是研究氧化还原官能团的重点.对于腐殖质氧化还原官能团的研究以化学、电化学和微生物等基本方法为主.本文尝试将这些方法与光谱法(如三维荧光光谱法、红外光谱法、核磁共振光谱法和电子自旋共振波谱法)相结合,不仅可以量化腐殖质氧化还原能力,还能对腐殖质氧化还原官能团具体组成有完整的解释,以便全面了解腐殖质的氧化还原官能团和氧化还原活性.

English Abstract

参考文献 (54)

返回顶部

目录

/

返回文章
返回