腐殖质氧化还原官能团测定新方法
New methods for the determination of redox functional groups in humic substances
-
摘要: 腐殖质是一种主要由碳、氢、氧、氮等元素构成的具有氧化还原活性的有机质,存在丰富的官能团,其中以酚基和羧基含量最为丰富.腐殖质的氧化还原能力与氧化还原官能团的数目和种类有关.一直以来醌基被认为是腐殖质最重要的氧化还原官能团,对于醌基的测定是研究氧化还原官能团的重点.对于腐殖质氧化还原官能团的研究以化学、电化学和微生物等基本方法为主.本文尝试将这些方法与光谱法(如三维荧光光谱法、红外光谱法、核磁共振光谱法和电子自旋共振波谱法)相结合,不仅可以量化腐殖质氧化还原能力,还能对腐殖质氧化还原官能团具体组成有完整的解释,以便全面了解腐殖质的氧化还原官能团和氧化还原活性.Abstract: Humic substances (HS) are redox active organic matters which are mainly composed of carbon, hydrogen, oxygen, nitrogen and other elements. Reducing capacities of HS relate to the type and number of redox functional groups. HS contain abundant functional groups including phenol and carboxyl groups. Quinone moieties are generally considered as the most important redox functional groups. This study attempts to illustrate chemical, electrochemical and microbial methods to quantify the redox characteristics of humic substances, and combine spectroscopic techniques (three-dimensional extraction-emission matrix technique, Fourier-transform infrared spectroscopy, nuclear magnetic resonance, electron spin resonance) to characterize the redox functional groups. The combination helps to better understand the composition of redox functional groups and the reducing capacities of HS.
-
Key words:
- humic substances /
- redox functional groups /
- reducing capacities /
- 3DEEM
-
-
[1] BRADLEY P M, CHAPELLE F H, LOVLEY D R. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene[J]. Applied and Environmental Microbiology, 1998, 64(8): 3102-3105. [2] STEVENSON F J. Humus chemistry: Genesis, composition, reactions[M]. 2nd Edition. New York: Wiley, 1994:17. [3] 窦森. 土壤有机质[M]. 北京:高等教育出版社, 2010: 149-151. DOU S. Soil organic matter[M]. Beijing: Higher Education Press, 2010: 149 -151(in Chinese).
[4] SERUDO R L, OLIVEIRA L C, ROCHA J C, et al. Reduction capability of soil humic substances from the rio negro basin, brazil, towards Hg(Ⅱ) studied by a multimethod approach and principal component analysis (PCA)[J]. Geoderma, 2007, 138(3-4): 229-236. [5] AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel Electrochemical approach to assess the redox properties of humic substances[J]. Environmental Science & Technology, 2010, 44(1): 87-93. [6] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19): 2984-2989. [7] RITCHIE J D, PERDUE E M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter[J]. Geochimica Et Cosmochimica Acta, 2003, 67(1):85-96. [8] CHEN J, GU B H, ROYER R A, et al. The roles of natural organic matter in chemical and microbial reduction of ferric iron[J]. Science of the Total Environment, 2003, 307(1-3): 167-178. [9] NOPAWAN R, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environmental Science & Technology, 2007, 41(22): 7844-7850. [10] 姜杰, 杨浈, 任谦, 等. 土壤腐殖质氧化还原电位及其相应电子转移能力分布[J]. 环境化学, 2015, 34(2):219-224. JIANG J, YANG Z, REN Q, et al. Distribution of soil humic acids redox potentials and corresponding electron transfer amounts[J]. Environmental Chemistry, 2015, 34(2): 219-224(in Chinese).
[11] LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448. [12] JIANG J AND KAPPLER A. Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling[J]. Environmental Science & Technology, 2008, 42(10): 3563-3569. [13] JIANG J, BAUER I, PAUL A, et al. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science & Technology, 2009, 43(10): 3639-3645. [14] FREDRICKSON J K, ROMINE M F, BELIAEV A S, et al. Towards environmental systems biology of Shewanella[J]. Nature Reviews Microbiology, 2008, 6(8): 592-603. [15] BELIAEV A S, SAFFARINI D A. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe (Ⅲ) and Mn (Ⅳ) reduction[J]. Journal of Bacteriology, 1998, 180(23): 6292-6297. [16] YANG Y, CHEN J, QIU D, et al. Roles of UndA and MtrC of Shewanella putrefaciens W3-18-1 in iron reduction[J]. Bmc Microbiology, 2013, 13(1): 496-498. [17] MYERS J M, MYERS C R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone[J]. Journal of Bacteriology, 2000, 182(1): 67-75. [18] RODEN E, KAPPLER A, BAUER L, et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances[J]. Nature Geoscience, 2010, 74(12): 417-421. [19] LIES D P, HERNANDEZ M E, KAPPLER A, et al. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms[J]. Applied and Environmental Microbiology, 2005, 71(8): 4414-4426. [20] SUYAMA A, SERA N, IWAKIRI R, et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy[J]. Soil Science, 1991, 152(4):259-271. [21] 夏玉宇. 化验员实用手册(第2版)[M]. 北京:化学工业出版社, 2010: 678-679. [22] 王波, 刘德军, 姚军, 等. 泥炭土中腐殖酸的提纯和表征研究[J]. 辐射防护, 2009, 29(3): 172-179. WANG B, LIU D J, YAO J, et al. Isolation and characterization of humic acids from peat soil[J]. Radiation Protection, 2009, 29(3): 172-179(in Chinese).
[23] 张军政,杨谦,席北斗,等. 垃圾填埋渗滤液溶解性有机物组分的光谱学特性研究[J]. 光谱学与光谱分析, 2008, 28(11): 2583-2587. ZHANG J Z, YANG Q, XI B D, et al. Study on spectral characteristic of dissolved organic matter fractions extracted from municipal solid waste landfill leachate[J]. Spectroscopy and Spectral Analysis, 2008, 28(11): 2583-2587(in Chinese).
[24] 刘新超, 李俊, 谢丽,等. 腐殖酸表征方法研究进展[J]. 净水技术, 2009, 28(3):6-9. LIU X C, LI J, XIE L, et al. Characterization methods of humic acid: A review[J]. Water Purification Technology, 2009, 28(3):6-9(in Chinese).
[25] 何海军, 瞿文川, 钱君龙. 湖泊沉积物中腐殖酸的紫外-可见分光光度法测定[J]. 分析测试技术与仪器, 1996, 2(1): 14-18. HE H J, QU W C, QIAN J L. Determination of humic acid in lake sediment by UV-VIS absorbance spectrophotometer[J]. Analysis and Testing Technology and Instruments, 1996, 2(1): 14-18(in Chinese).
[26] TESAR M, PRANTL R, LECHNER P. Application of FTIR for assessment of the biological stability of landfilled municipal solid waste (MSW) during in situ aeration[J]. Journal of Environmental Monitoring, 2007, 9(1):111-120. [27] TINTNER J, SMIDT E, BOHMB K, et al. Risk assessment of an old landfill regarding the potential of gaseous emissions-A case study based on bioindication, FT-IR spectroscopy and thermal analysis[J]. Waste Management, 2012, 32(12):2418-2425. [28] 胡学斌,吉芳英,黎司,等. 三峡库区土壤腐殖质的振动光谱研究[J].光谱学与光谱分析,2010,30(5):1376-1380. HU X B, JI F Y, LI S, et al. Study of vibrational spectra of humic substance in soils from the Gorges Reservoir Area[J]. Spectroscopy and Spectral Analysis, 2010, 30(5):1376-1380(in Chinese).
[29] [30] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J].Marine Chemistry,1996, 51(4): 325-346. [31] 张彩华. 光谱法在腐殖质研究中的应用进展[J]. 光谱实验室, 2011, 28(2): 693-696. ZHANG C H. Advance of application of spectroscopy in humic substance[J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(2): 693-696(in Chinese).
[32] BEALE D J, PORTER N A, RODDICK F A. The interaction between natural organic matter in raw waters and pesticide residues: A three dimensional excitation-emission matrix (3DEEM) fluorescence investigation[J].Water Science & Technology,2013,67(11):2428-2436. [33] DATTA C, GHOSH K, MUKHERJEE S K. Fluorescence excitation spectra of different fractions of humus[J]. Journal-Indian Chemical Society, 1971, 48: 279-287. [34] KLAPPER L, MCKNIGHT D M, FULTON J R, et al. Fulvic acid oxidation state detection using fluorescence spectroscopy[J]. Environmental Science & Technology, 2002, 36(14):3170-3175. [35] CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J].Environmental Science & Technology, 2005, 39(21):8142-8149. [36] MACALADY D L, WALTON-DAY K. New light on a aark subject: On the use of fluorescence data to deduce redox states of natural organic matter (NOM)[J]. Aquatic Sciences, 2009, 71(2):135-143. [37] 姜杰, 李黎, 孙国新. 基于三维荧光光谱特征研究土壤腐殖质氧化还原特性[J].环境化学, 2012, 31(12):2002-2007. JIANG J, LI L, SUN G X. Investigation of redox activities of soil humic acids using 3D excitation emission matrix fluorescence spectroscopy[J]. Environmental Chemistry, 2012, 31(12):2002-2007(in Chinese).
[38] YANG Z, DU M C, JIANG J. Reducing capacities and redox potentials of humic substances extracted from sewage sludge[J]. Chemosphere, 2015, 144: 902-908. [39] 席北斗, 魏自民, 赵越, 等. 垃圾渗滤液水溶性有机物荧光谱特性研究[J]. 光谱学与光谱分析, 2008, 28(11):2605-2608. XI B D, WEI Z M, ZHAO Y, et al. Study on fluorescence characteristic of dissolved organic matter from municipal solid waste landfill leachate. Spectroscopy and Spectral Analysis, 2008, 28(11): 2605-2608.
[40] HUDSON N, BAKER A, WARDB D, et al. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England[J]. Science of The Total Environment, 2008, 391(1): 149-158. [41] BAKER A, CURRY M. Fluorescence of leachates from three contrasting landfills[J]. Water Research, 2004, 38(10): 2605-2613. [42] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic materi-als and aromaticity[J]. Limnology & Oceanography, 2001, 46(1): 38-48. [43] WU F, TANOUE E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters[J]. Environmental Science & Technology,2001, 35(18): 3646-3652. [44] 李文芳,卜晓英,黄美娥,等. 土壤腐殖质的降解及其结构[J]. 安徽农业科学, 2005, 33(3): 494-495. LI W F, BU X Y, HUANG M E, et al. Elementary exploration of separation, extraction and structural analysis of soil humus[J]. Journal of Anhui Agricultural Sciences, 2005, 33(3): 494-495(in Chinese).
[45] THORN K A, ARTERBURN J B, MIKITA M A. Nitrogen-15 and carbon-13 NMR investigation of hydroxylamine-derivatized humic substances[J]. Environmental Science & Technology, 1992, 26(1): 107-116. [46] SENESI N. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals: Part Ⅱ. The fluorescence spectroscopy approach[J]. Analytica Chimica Acta, 1990, 232: 77-106. [47] WILSON S A, WEBER J H. Electron spin resonance analysis of semiquinone free radicals of aquatic and soil fulvic and humic acids[J]. Analytical Letters, 1977, 10(1): 75-84. [48] SENESI N, SCHNITZER M. Effects of pH, reaction time, chemical reduction and irradiation on ESR spectra of fulvic acid[J]. Soil Science, 1977, 123(4): 224-234. [49] NURMI J T, TRATNYEK P G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles[J]. Environmental Science & Technology, 2002, 36(4):617-624. [50] FIMMEN R L, CORY R M, CHIN Y P, et al. Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter[J]. Geochimica et Cosmochimica Acta, 2007, 71(12):3003-3015. [51] KAPPLER A, HADERLEIN S B. Natural organic matter as reductant for chlorinated aliphatic pollutants[J]. Environmental Science & Technology, 2003, 37(12): 2714-2719. [52] AESCHBACHER M, VERGARI D, SCHWARZENBACH R P, et al. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids[J]. Environmental Science & Technology, 2011, 45(19):8385-8394. [53] AESCHBACHER M, GRAF C, SCHWARZENBACH R P, et al. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids[J]. Environmental Science & Technology, 2012, 46(9):4916-4925. [54] KLÜPFEL L, PIEPENBROCK A, KAPPLER A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments[J]. Nature Geoscience, 2014, 7(3): 195-200. -

计量
- 文章访问数: 2082
- HTML全文浏览数: 2007
- PDF下载数: 699
- 施引文献: 0