纳米材料在放射性废水处理中的吸附应用
Application of adsorptive nanomaterials in radioactive water treatment
-
摘要: 随着核能的开发与利用,放射性污染已经成为一个严峻的环境问题,放射性废水的处理日益引起人们的重视.近年来,纳米技术飞速发展,纳米材料已成为一种新型材料.纳米材料具有独特的物理化学性质,如小尺寸效应、巨大比表面积、极高的反应活性等,这些特性使纳米材料在水处理领域展现了巨大的应用潜力.利用新颖高效的纳米材料吸附去除废水中的放射性核素已越来越受到研究者的关注.本文综述了国内外纳米材料吸附处理废水中放射性核素的研究进展,主要总结了碳纳米材料、纳米金属氧化物、钛基纳米材料、零价金属纳米颗粒对放射性废水的处理性能,简要阐述了纳米材料对放射性核素的吸附机理.最后,对纳米材料去除放射性核素污染研究的未来发展方向及待研究问题进行了展望.Abstract: Radioactive contamination is one of the most serious environmental pollution. Nanomaterials have become a new type of materials with a rapid development of nanotechnology. Nanomaterials have unique physical and chemical properties such as small size effect, large specific surface area, high reactivity. These features have attracted considerable attention in radioactive water treatment. Advances of the nanomaterials in radioactive wastewater treatment are reviewed in this paper. The most studied adsorptive nanomaterials such as carbon nanomaterials, nano-metal-oxides, titanate-based nanomaterials and zero-valent metal nanoparticles are discussed in detail. In addition, the opportunities and challenges of those nanomaterials for future prospects have been presented. Specifically, we identify the future directions of nanomaterials in radioactive water treatment, which urgently need to be studied.
-
Key words:
- radioactive water /
- water treatment /
- nanomaterials /
- adsorption
-
-
[1] RAHMAN R, IBRAHIUM H, HUNG Y T. Liquid radioactive wastes treatment: A review[J]. Water, 2011, 3(2):551-565. [2] 石伟群, 赵宇亮, 柴之芳. 纳米材料与纳米技术在先进核能系统中的应用前瞻[J]. 化学进展, 2011, 23(7):1478-1484. SHI W Q, ZHAO Y L. CHAI Z F. A preview of Nano-materials and nano-technology applied in advanced nuclear energy systems[J]. Progress Chemistry, 2011, 23(7):1478-1484(in Chinese).
[3] KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability and effects[J]. Environmental Toxicology & Chemistry, 2008, 27(9):1825-1851. [4] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58. [5] BELLONI F, KÜTAHYALI C, RONDINELLA V V, et al. Can carbon nanotubes play a role in the field of nuclear waste management?[J]. Environmental Science & Technology, 2009, 43(5):1250-1255. [6] WANG X, CHEN C, HU W, et al. Sorption of 243Am (Ⅲ) to multiwall carbon nanotubes[J]. Environmental Science & Technology, 2005, 39(8):2856-2860. [7] CHEN C, LI X, ZHAO D, et al. Adsorption kinetic, thermodynamic and desorption studies of Th (Ⅳ) on oxidized multi-wall carbon nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1):449-454. [8] SHIM J W, PARK S J, RYU S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon, 2001, 39(11):1635-1642. [9] TAN X, XU D, CHEN C, et al. Adsorption and kinetic desorption study of 152+154Eu (Ⅲ) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods[J]. Radiochimica Acta, 2008, 96(1):23-29. [10] CHEN C, HU J, XU D, et al. Surface complexation modeling of Sr (Ⅱ) and Eu (Ⅲ) adsorption onto oxidized multiwall carbon nanotubes[J]. Journal of Colloid and Interface Science, 2008, 323(1):33-41. [11] FAN Q H, SHAO D D, HU J, et al. Adsorption of humic acid and Eu (Ⅲ) to multi-walled carbon nanotubes: Effect of pH, ionic strength and counterion effect[J]. Radiochimica Acta International Journal for Chemical Aspects of Nuclear Science and Technology, 2009, 97(3):141-148. [12] CHEN C, WANG X, NAGATSU M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environmental Science & Technology, 2009, 43(7):2362-2367. [13] CHEN C, HU J, SHAO D, et al. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(Ⅱ) and Sr(Ⅱ)[J]. Journal of Hazardous Materials, 2009, 164(2-3):923-928. [14] SHAO D, JIANG Z, WANG X, et al. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J]. The Journal of Physical Chemistry B, 2009, 113(4):860-864. [15] ZARE F, GHAEDI M, DANESHFAR A, et al. Efficient removal of radioactive uranium from solvent phase using AgOH-MWCNTs nanoparticles: Kinetic and thermodynamic study[J]. Chemical Engineering Journal, 2015, 273:296-306. [16] SHENG G, LI Y, DONG H, et al. Environmental condition effects on radionuclide 64Cu (Ⅱ) sequestration to a novel composite: Polyaniline grafted multiwalled carbon nanotubes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293(3):797-806. [17] STANKOVICH S, PINER R D, CHEN X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry, 2006, 16(2):155-158. [18] ROMANCHUK A Y, SLESAREV A S, KALMYKOV S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15(7):2321-2327. [19] SUN Y, WANG Q, CHEN C, et al. Interaction between Eu (Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environmental Science & Technology, 2012, 46(11):6020-6027. [20] ZHAO G, WEN T, YANG X, et al. Preconcentration of U (Ⅵ) ions on few-layered graphene oxide nanosheets from aqueous solutions[J]. Dalton Transactions, 2012, 41(20):6182-6188. [21] SUN Y, YANG S, CHEN Y, et al. Adsorption and desorption of U (Ⅵ) on functionalized graphene oxides: A combined experimental and theoretical study[J]. Environmental Science & Technology, 2015, 49(7):4255-4262. [22] WANG X, CHEN Z, WANG X. Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions[J]. Science China Chemistry, 2015, 58(11):1766-1773. [23] ZHAO G, LI J, REN X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science & Technology, 2011, 45(24):10454-10462. [24] JIN Z, SHENG J, SUN Y. Characterization of radioactive cobalt on graphene oxide by macroscopic and spectroscopic techniques[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3):1979-1986. [25] PAN N, GUAN D, HE T, et al. Removal of Th4+ ions from aqueous solutions by graphene oxide[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(3):1999-2008. [26] FANG F, KONG L, HUANG J, et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J]. Journal of Hazardous Materials, 2014, 270:1-10. [27] QI W, TIAN L, LIU B, et al. Adsorption of Eu (Ⅲ) on defective magnetic FeNi/RGO composites: Effect of pH, ion strength, ions and humic acid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3):2211-2220. [28] SONG W, WANG X, WANG Q, et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Physical Chemistry Chemical Physics, 2015, 17(1):398-406. [29] SUN Y, SHAO D, CHEN C, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science & Technology, 2013, 47(17):9904-9910. [30] YANG H, SUN L, ZHAI J, et al. In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water[J]. Journal of Materials Chemistry A, 2014, 2(2):326-332. [31] SHAWKY H A, CHAE S R, LIN S, et al. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment[J]. Desalination, 2011, 272(1-3):46-50. [32] DAER S, KHARRAZ J, GIWA A, et al. Recent applications of nanomaterials in water desalination: A critical review and future opportunities[J]. Desalination, 2015, 367:37-48. [33] HAN Y, XU Z, GAO C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29):3693-3700. [34] XU M, WEI G, LI S, et al. Titanate nanotubes as a promising absorbent for high effective radioactive uranium ions uptake[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(8):6374-6379. [35] OLSSON M, JAKOBSSON A M, ALBINSSON Y. Sorption of Pu (Ⅵ) onto TiO2[J]. Journal of Colloid and Interface Science, 2003, 266(2):269-275. [36] TAN X, WANG X, CHEN C, et al. Effect of soil humic and fulvic acids, pH and ionic strength on Th (Ⅳ) sorption to TiO2 nanoparticles[J]. Applied Radiation and Isotopes, 2007, 65(4):375-381. [37] TAN X, WANG X, FANG M, et al. Sorption and desorption of Th (Ⅳ) on nanoparticles of anatase studied by batch and spectroscopy methods[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296(1):109-116. [38] VORONINA A, SEMENISHCHEV V, NOGOVITSYNA E, et al. A study of ferrocyanide sorbents on hydrated titanium dioxide support using physicochemical methods[J]. Radiochemistry, 2012, 54(1):69-74. [39] MAJIDNIA Z, IDRIS A, MAJID M, et al. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads[J]. Applied Radiation and Isotopes, 2015, 105:105-113. [40] LIU S, WANG N, ZHANG Y, et al. Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation[J]. Journal of Hazardous Materials, 2015, 284:171-181. [41] JOHNSON A K, KACZOR J, HAN H, et al. Highly hydrated poly (allylamine)/silica magnetic resin[J]. Journal of Nanoparticle Research, 2011, 13(10):4881-4895. [42] STOPA L C B, YAMAURA M. Uranium removal by chitosan impregnated with magnetite nanoparticles: Adsorption and desorption[J]. International Journal of Nuclear Energy Science and Technology, 2010, 5(4):283-289. [43] FAN F L, QIN Z, BAI J, et al. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles[J]. Journal of Environmental Radioactivity, 2012, 106:40-46. [44] DING C, CHENG W, SUN Y, et al. Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides[J]. Journal of Hazardous Materials, 2015, 295:127-137. [45] KAYNAR V H, AYVACıKLı M, KAYNAR S Ç, et al. Removal of uranium (Ⅵ) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3):1469-1477. [46] KAYNAR U H, AYVACIKLI M, HICSONMEZ U, et al. Removal of thorium (Ⅳ) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies[J]. Journal of Environmental Radioactivity, 2015, 150:145-151. [47] TEL H, ALTAŞ Y, ERAL M, et al. Preparation of ZrO2 and ZrO2-TiO2 microspheres by the sol-gel method and an experimental design approach to their strontium adsorption behaviours[J]. Chemical Engineering Journal, 2010, 161(1):151-160. [48] YANG D, ZHENG Z, LIU H, et al. Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water[J]. The Journal of Physical Chemistry C, 2008, 112(42):16275-16280. [49] YANG D, ZHENG Z, YUAN Y, et al. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra (Ⅱ) ions from water[J]. Physical Chemistry Chemical Physics, 2010, 12(6):1271-1277. [50] LIU J, LUO M, YUAN Z, et al. Synthesis, characterization, and application of titanate nanotubes for Th (Ⅳ) adsorption[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(2):1427-1434. [51] YANG D, SARINA S, ZHU H, et al. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes[J]. Angewandte Chemie International Edition, 2011, 50(45):10594-10598. [52] YANG D, LIU H, LIU L, et al. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: Promising candidates for entrapment of radioactive iodine anions[J]. Nanoscale, 2013, 5(22):11011-11018. [53] SARINA S, BO A, LIU D, et al. Separate or simultaneous removal of radioactive cations and anions from water by layered sodium vanadate-based sorbents[J]. Chemistry of Materials, 2014, 26(16):4788-4795. [54] BO A, SARINA S, ZHENG Z, et al. Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent[J]. Journal of Hazardous Materials, 2013, 246:199-205. [55] XU M, WEI G, LIU N, et al. Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater[J]. Nanoscale, 2014, 6(2):722-725. [56] ZHOU L, XU M, WEI G, et al. Fe3O4@titanate nanocomposites: Novel reclaimable adsorbents for removing radioactive ions from wastewater[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(5):2742-2747. [57] DARAB J G, AMONETTE A B, BURKE D S, et al. Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron[J]. Chemistry of Materials, 2007, 19(23):5703-5713. [58] XU J, LI Y, JING C, et al. Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1):329-336. [59] 张煜昌, 王娜, 那平. Ag/TiO2复合材料的制备及其对碘离子的吸附研究[J]. 离子交换与吸附, 2013, 29(4):296-305. ZHANG Y C. WANG N. NA P. Study on preparation of Ag/TiO2 composite materials and its adsorption properties for iodine ions[J]. Ion Exchange and Adsorption,2013, 29(4):296-305(in Chinese).
-

计量
- 文章访问数: 1584
- HTML全文浏览数: 1402
- PDF下载数: 1531
- 施引文献: 0