[1] RAHMAN R, IBRAHIUM H, HUNG Y T. Liquid radioactive wastes treatment: A review[J]. Water, 2011, 3(2):551-565.
[2] 石伟群, 赵宇亮, 柴之芳. 纳米材料与纳米技术在先进核能系统中的应用前瞻[J]. 化学进展, 2011, 23(7):1478-1484. SHI W Q, ZHAO Y L. CHAI Z F. A preview of Nano-materials and nano-technology applied in advanced nuclear energy systems[J]. Progress Chemistry, 2011, 23(7):1478-1484(in Chinese).
[3] KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability and effects[J]. Environmental Toxicology & Chemistry, 2008, 27(9):1825-1851.
[4] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[5] BELLONI F, KÜTAHYALI C, RONDINELLA V V, et al. Can carbon nanotubes play a role in the field of nuclear waste management?[J]. Environmental Science & Technology, 2009, 43(5):1250-1255.
[6] WANG X, CHEN C, HU W, et al. Sorption of 243Am (Ⅲ) to multiwall carbon nanotubes[J]. Environmental Science & Technology, 2005, 39(8):2856-2860.
[7] CHEN C, LI X, ZHAO D, et al. Adsorption kinetic, thermodynamic and desorption studies of Th (Ⅳ) on oxidized multi-wall carbon nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1):449-454.
[8] SHIM J W, PARK S J, RYU S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon, 2001, 39(11):1635-1642.
[9] TAN X, XU D, CHEN C, et al. Adsorption and kinetic desorption study of 152+154Eu (Ⅲ) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods[J]. Radiochimica Acta, 2008, 96(1):23-29.
[10] CHEN C, HU J, XU D, et al. Surface complexation modeling of Sr (Ⅱ) and Eu (Ⅲ) adsorption onto oxidized multiwall carbon nanotubes[J]. Journal of Colloid and Interface Science, 2008, 323(1):33-41.
[11] FAN Q H, SHAO D D, HU J, et al. Adsorption of humic acid and Eu (Ⅲ) to multi-walled carbon nanotubes: Effect of pH, ionic strength and counterion effect[J]. Radiochimica Acta International Journal for Chemical Aspects of Nuclear Science and Technology, 2009, 97(3):141-148.
[12] CHEN C, WANG X, NAGATSU M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environmental Science & Technology, 2009, 43(7):2362-2367.
[13] CHEN C, HU J, SHAO D, et al. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(Ⅱ) and Sr(Ⅱ)[J]. Journal of Hazardous Materials, 2009, 164(2-3):923-928.
[14] SHAO D, JIANG Z, WANG X, et al. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J]. The Journal of Physical Chemistry B, 2009, 113(4):860-864.
[15] ZARE F, GHAEDI M, DANESHFAR A, et al. Efficient removal of radioactive uranium from solvent phase using AgOH-MWCNTs nanoparticles: Kinetic and thermodynamic study[J]. Chemical Engineering Journal, 2015, 273:296-306.
[16] SHENG G, LI Y, DONG H, et al. Environmental condition effects on radionuclide 64Cu (Ⅱ) sequestration to a novel composite: Polyaniline grafted multiwalled carbon nanotubes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293(3):797-806.
[17] STANKOVICH S, PINER R D, CHEN X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry, 2006, 16(2):155-158.
[18] ROMANCHUK A Y, SLESAREV A S, KALMYKOV S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15(7):2321-2327.
[19] SUN Y, WANG Q, CHEN C, et al. Interaction between Eu (Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J]. Environmental Science & Technology, 2012, 46(11):6020-6027.
[20] ZHAO G, WEN T, YANG X, et al. Preconcentration of U (Ⅵ) ions on few-layered graphene oxide nanosheets from aqueous solutions[J]. Dalton Transactions, 2012, 41(20):6182-6188.
[21] SUN Y, YANG S, CHEN Y, et al. Adsorption and desorption of U (Ⅵ) on functionalized graphene oxides: A combined experimental and theoretical study[J]. Environmental Science & Technology, 2015, 49(7):4255-4262.
[22] WANG X, CHEN Z, WANG X. Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions[J]. Science China Chemistry, 2015, 58(11):1766-1773.
[23] ZHAO G, LI J, REN X, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science & Technology, 2011, 45(24):10454-10462.
[24] JIN Z, SHENG J, SUN Y. Characterization of radioactive cobalt on graphene oxide by macroscopic and spectroscopic techniques[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3):1979-1986.
[25] PAN N, GUAN D, HE T, et al. Removal of Th4+ ions from aqueous solutions by graphene oxide[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(3):1999-2008.
[26] FANG F, KONG L, HUANG J, et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J]. Journal of Hazardous Materials, 2014, 270:1-10.
[27] QI W, TIAN L, LIU B, et al. Adsorption of Eu (Ⅲ) on defective magnetic FeNi/RGO composites: Effect of pH, ion strength, ions and humic acid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3):2211-2220.
[28] SONG W, WANG X, WANG Q, et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Physical Chemistry Chemical Physics, 2015, 17(1):398-406.
[29] SUN Y, SHAO D, CHEN C, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science & Technology, 2013, 47(17):9904-9910.
[30] YANG H, SUN L, ZHAI J, et al. In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water[J]. Journal of Materials Chemistry A, 2014, 2(2):326-332.
[31] SHAWKY H A, CHAE S R, LIN S, et al. Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment[J]. Desalination, 2011, 272(1-3):46-50.
[32] DAER S, KHARRAZ J, GIWA A, et al. Recent applications of nanomaterials in water desalination: A critical review and future opportunities[J]. Desalination, 2015, 367:37-48.
[33] HAN Y, XU Z, GAO C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29):3693-3700.
[34] XU M, WEI G, LI S, et al. Titanate nanotubes as a promising absorbent for high effective radioactive uranium ions uptake[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(8):6374-6379.
[35] OLSSON M, JAKOBSSON A M, ALBINSSON Y. Sorption of Pu (Ⅵ) onto TiO2[J]. Journal of Colloid and Interface Science, 2003, 266(2):269-275.
[36] TAN X, WANG X, CHEN C, et al. Effect of soil humic and fulvic acids, pH and ionic strength on Th (Ⅳ) sorption to TiO2 nanoparticles[J]. Applied Radiation and Isotopes, 2007, 65(4):375-381.
[37] TAN X, WANG X, FANG M, et al. Sorption and desorption of Th (Ⅳ) on nanoparticles of anatase studied by batch and spectroscopy methods[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296(1):109-116.
[38] VORONINA A, SEMENISHCHEV V, NOGOVITSYNA E, et al. A study of ferrocyanide sorbents on hydrated titanium dioxide support using physicochemical methods[J]. Radiochemistry, 2012, 54(1):69-74.
[39] MAJIDNIA Z, IDRIS A, MAJID M, et al. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads[J]. Applied Radiation and Isotopes, 2015, 105:105-113.
[40] LIU S, WANG N, ZHANG Y, et al. Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation[J]. Journal of Hazardous Materials, 2015, 284:171-181.
[41] JOHNSON A K, KACZOR J, HAN H, et al. Highly hydrated poly (allylamine)/silica magnetic resin[J]. Journal of Nanoparticle Research, 2011, 13(10):4881-4895.
[42] STOPA L C B, YAMAURA M. Uranium removal by chitosan impregnated with magnetite nanoparticles: Adsorption and desorption[J]. International Journal of Nuclear Energy Science and Technology, 2010, 5(4):283-289.
[43] FAN F L, QIN Z, BAI J, et al. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles[J]. Journal of Environmental Radioactivity, 2012, 106:40-46.
[44] DING C, CHENG W, SUN Y, et al. Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides[J]. Journal of Hazardous Materials, 2015, 295:127-137.
[45] KAYNAR V H, AYVACıKLı M, KAYNAR S Ç, et al. Removal of uranium (Ⅵ) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(3):1469-1477.
[46] KAYNAR U H, AYVACIKLI M, HICSONMEZ U, et al. Removal of thorium (Ⅳ) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies[J]. Journal of Environmental Radioactivity, 2015, 150:145-151.
[47] TEL H, ALTAŞ Y, ERAL M, et al. Preparation of ZrO2 and ZrO2-TiO2 microspheres by the sol-gel method and an experimental design approach to their strontium adsorption behaviours[J]. Chemical Engineering Journal, 2010, 161(1):151-160.
[48] YANG D, ZHENG Z, LIU H, et al. Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water[J]. The Journal of Physical Chemistry C, 2008, 112(42):16275-16280.
[49] YANG D, ZHENG Z, YUAN Y, et al. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra (Ⅱ) ions from water[J]. Physical Chemistry Chemical Physics, 2010, 12(6):1271-1277.
[50] LIU J, LUO M, YUAN Z, et al. Synthesis, characterization, and application of titanate nanotubes for Th (Ⅳ) adsorption[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(2):1427-1434.
[51] YANG D, SARINA S, ZHU H, et al. Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes[J]. Angewandte Chemie International Edition, 2011, 50(45):10594-10598.
[52] YANG D, LIU H, LIU L, et al. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: Promising candidates for entrapment of radioactive iodine anions[J]. Nanoscale, 2013, 5(22):11011-11018.
[53] SARINA S, BO A, LIU D, et al. Separate or simultaneous removal of radioactive cations and anions from water by layered sodium vanadate-based sorbents[J]. Chemistry of Materials, 2014, 26(16):4788-4795.
[54] BO A, SARINA S, ZHENG Z, et al. Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent[J]. Journal of Hazardous Materials, 2013, 246:199-205.
[55] XU M, WEI G, LIU N, et al. Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater[J]. Nanoscale, 2014, 6(2):722-725.
[56] ZHOU L, XU M, WEI G, et al. Fe3O4@titanate nanocomposites: Novel reclaimable adsorbents for removing radioactive ions from wastewater[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(5):2742-2747.
[57] DARAB J G, AMONETTE A B, BURKE D S, et al. Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron[J]. Chemistry of Materials, 2007, 19(23):5703-5713.
[58] XU J, LI Y, JING C, et al. Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1):329-336.
[59] 张煜昌, 王娜, 那平. Ag/TiO2复合材料的制备及其对碘离子的吸附研究[J]. 离子交换与吸附, 2013, 29(4):296-305. ZHANG Y C. WANG N. NA P. Study on preparation of Ag/TiO2 composite materials and its adsorption properties for iodine ions[J]. Ion Exchange and Adsorption,2013, 29(4):296-305(in Chinese).