粟米糠吸附Pb2+的关键因素交互效应及吸附机理研究

冀泽华, 冯冲凌, 李刘刚. 粟米糠吸附Pb2+的关键因素交互效应及吸附机理研究[J]. 环境化学, 2017, 36(1): 123-132. doi: 10.7524/j.issn.0254-6108.2017.01.2016051703
引用本文: 冀泽华, 冯冲凌, 李刘刚. 粟米糠吸附Pb2+的关键因素交互效应及吸附机理研究[J]. 环境化学, 2017, 36(1): 123-132. doi: 10.7524/j.issn.0254-6108.2017.01.2016051703
JI Zehua, FENG Chongling, LI Liugang. Adsorption of Pb2+ in aqueous solutions by millet chaff: interactive effects between the key factors and mechanism study[J]. Environmental Chemistry, 2017, 36(1): 123-132. doi: 10.7524/j.issn.0254-6108.2017.01.2016051703
Citation: JI Zehua, FENG Chongling, LI Liugang. Adsorption of Pb2+ in aqueous solutions by millet chaff: interactive effects between the key factors and mechanism study[J]. Environmental Chemistry, 2017, 36(1): 123-132. doi: 10.7524/j.issn.0254-6108.2017.01.2016051703

粟米糠吸附Pb2+的关键因素交互效应及吸附机理研究

  • 基金项目:

    国家“十二五”科技支撑计划项目(2012BAC09B03),湖南省科技计划项目(2015SK20023),湖南省环境科学与工程重点学科建设项目,中南林业科技大学研究生科技创新基金(CX2015B29)资助.

Adsorption of Pb2+ in aqueous solutions by millet chaff: interactive effects between the key factors and mechanism study

  • Fund Project: Supported by the Key Project of the National Twelfth-Five Year Research Program of China(2012BAC09B03), the Key Program of Hunan Provincial Department of Science and Technology (2015SK20023), the Educational Department of Hunan Province (the Key Subject and Lab) and Scientific Innovation Fund for Graduate of Central South University of Forestry and Technology(CX2015B29).
  • 摘要: 采用响应面法(Box-Behnken design,BBD)考察粟米糠吸附Pb2+的不同因素(pH值、Pb2+初始浓度、吸附剂浓度和吸附时间)对吸附过程的影响及交互效应,并通过等温吸附和表征分析研究吸附过程的热力学特征及其吸附机理.结果表明,pH值与Pb2+初始浓度和吸附剂浓度交互效应显著,Pb2+初始浓度与吸附时间的交互效应显著.使用等温吸附模型拟合吸附过程发现,Langmuir和Freundlich模型拟合结果较好,该过程为物理吸附与化学吸附共同作用,293、298、303、308 K条件下的粟米糠最大吸附量qm分别为10.33、10.56、11.10、11.22 mg·g-1,其对Pb2+吸附能力随温度上升而提高.对吸附热力学参数ΔG、ΔH与ΔS计算表明该过程为吸热的自发反应,随反应进行体系混乱度增加.SEM和FTIR分析表明,粟米糠吸附Pb2+前后表面形态发生明显改变,羟基、羧基、醇羟基等基团在粟米糠吸附Pb2+中起主要作用.
  • 加载中
  • [1] 吴晴雯, 孟梁, 张志豪, 等. 芦苇秸秆生物炭对水体中重金属Ni2+的吸附特性[J]. 环境化学, 2015,34(9):1703-1709.

    WU Q W,MENG L, ZHANG Z H, et al. Adsorption behaviors of Ni2+ onto reed straw biochar in the aquatic solutions[J]. Environmental Chemistry, 2015, 34(9):1703-1709(in Chinese).

    [2] WEN Y, PING W, WEN L L, et al. The diatomite modified by PAM and applied to adsorb Pb(Ⅱ) in the simulated wastewater[J]. Advanced Materials Research, 2011, 233-235:382-389.
    [3] 杨军, 张玉龙, 杨丹, 等. 稻秸对Pb2+的吸附特性[J].环境科学研究,2012,25(7):815-819.

    YANG J,ZHANG Y L,YANG D, et al. Adsorption characteristics of Pb2+ on rice straw[J].Research of Environmental Sciences,2012, 25(7):815-819(in Chinese).

    [4] KONG Z L, LI X C, TIAN J Y, et al. Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu(Ⅱ) from solutions[J]. Environ Manage,2014, 134:109-116.
    [5] 李荣华, 张增强, 孟昭福, 等.玉米秸秆对Cr(Ⅵ)的生物吸附及热力学特征研究[J].环境科学学报, 2009,29(7):1434-1441.

    LI R H, ZHANG Z Q, Meng Z F, et al. Biosorption of Cr(Ⅵ)by corn stalk biomass:Thermodynamics and mechanism[J].Acta Scientiae Circumstantiae, 2009,29(7):1434-1441(in Chinese).

    [6] 沈士德, 徐娟. 柚皮粉对水中Cr(Ⅵ)的吸附性能研究[J]. 环境工程学报,2010,4(8):1842-1845.

    SHEN S, XU J. Research on adsorption of hexavalent chromium in water onto grape fruit husk powder[J]. Chinese Journal of Environmental Engineering,2010,4(8):1842-1845(in Chinese).

    [7] 吕文刚. 改性棕榈丝吸附水中重金属的研究[D].广州:华南理工大学,2012. LV W G. Sorption of heavy metals from water by modified palm thread[D]. Guangzhou:South China University of Technology, 2012(in Chinese).
    [8] 党艳, 罗倩, 李克斌, 等.荞麦皮生物吸附去除水中罗丹明B的吸附条件响应面法及热力学研究[J].环境科学学报, 2011,31(12):2601-2608.

    DANG Y, LUO Q, LI K B, et al. Biosorption of rhodamine-B by buckwheat hull:Response surface methodology and thermodynamics study[J]. Acta Scientiae Circumstantiae, 2011, 31(12):2601-2608(in Chinese).

    [9] 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J].环境科学学报, 2010,30(4):673-701.

    WANG J L, CHEN C. Research advances in heavy metal removal by biosorption[J]. Acta Scientiae Circumstantiae, 2010, 30(4):673-701(in Chinese).

    [10] 李跃, 谢水波, 林达, 等.小球藻对U(Ⅵ)的生物吸附特性[J].微生物学通报, 2008,35(5):760-764.

    LI Y, XIE S B, LIN D, et al. The character of U(Ⅵ) biosorption by chlorella pyrenoidosa[J].Microbiology, 35(5):760-764(in Chinese).

    [11] KIRAN B, KAUSHIK A, KAUSHIK C P. Response surface methodological approach for optimizing removal of Cr(Ⅵ)from aqueous solution using immobilized cyanobacterium[J].Chemical Engineering Journal,2007,126(2-3):147-153.
    [12] 李璐, 杨朝晖, 孙珮石, 等.基于响应面优化条件下柚皮对Pb2+的吸附[J].环境科学学报,2009,29(7):1426-1433.

    LI L, YANG Z H, SUN P S, et al. Optimization of the biosorption of Pb2+ by citron peel using response surface methodology[J]. Acta Scientiae Circumstantiae, 2009, 29(7):1426-1433(in Chinese).

    [13] 张静进, 刘云国, 张薇, 等. 海藻酸钠包埋活性炭与细菌的条件优化及其对Pb2+的吸附特征研究[J].环境科学,2010,31(11):2684-2690.

    ZHANG J J, LIU Y G, ZHANG W, et al. Optimization immobilizing activated carbon and bacteria by sodium alginate and its character of adsorption of Pb2+[J]. Environmental Science, 2010,31(11):2684-2690(in Chinese).

    [14] 吴沣, 郝瑞霞, 鲁安怀, 等. 塔宾曲霉的生物学特征及其对环境中Pb2+的固定作用研究[J]. 环境科学学报,2015, 35(1):144-151.

    WU F, HAO R X, LU A H, et al. Biological characteristics of aspergillus tubingensis and its fixation to Pb2+[J]. Acta Scientiae Circumstantiae,2015, 35(1):144-151(in Chinese).

    [15] MODHER A, AISHAH S, POZI M. Characterization of the adsorption of the lead (Ⅱ) by the nonliving biomass spirogyra neglecta (Hasall) kützing[J]. American Journal of Biochemistry and Biotechnology, 2009, 5(2):75-83.
    [16] 李进, 冯冲凌, 李科林, 等.抗铅锌功能菌生长菌株和干菌体吸附Pb2+、Zn2+性能优化及机理分析[J].微生物学通报.2015,42(7):1224-1233.

    LI J, FENG C L, LI K L, et al. Biosorption of Pb(Ⅱ) and Zn(Ⅱ) by the growing strain/dry biomass of a resistant fungus:Optimization and mechanism studies[J]. Microbiology China, 2015, 42(7):1224-1233(in Chinese).

    [17] KRISHNA G B, SUSMIA S G. Kaolinite and montmorillonite as adsorbents for Fe(Ⅲ),Co(Ⅱ) and Ni(Ⅱ) in aqueous medium[J]. Applied Clay Science, 2008, 41(1/2):1-9.
    [18] WU X F, HU Y L, ZHAO F, et al. Ion adsorption components in liquid/solid systems[J].Journal of Environmental Sciences, 2006, 18(6):1167-1175.
    [19] NEMR A E. Potential of pomegranate husk carbon for Cr(VI) removal from wastewater:Kinetic and isotherm studies[J].Journal of Hazardous Materials, 2009,162:132-141.
    [20] 杨静.板栗内皮对水溶液中Pb2+和Cd2+的吸附研究[D].保定:河北农业大学,2014. YANG J. The adsorption of aquatic lead and cadmium by chestnut inner shell[D]. Baoding:Agricultural University of Hebei Province,2014(in Chinese).
    [21] WAN N W S, HANAFIAH M A K M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review[J]. Bioresource Technology, 2008, 99(10):3935-3948.
    [22] 杨亮, 郝瑞霞, 吴沣, 等.耐受铅真菌的筛选及其对Pb2+吸附的初步研究[J]. 环境科学学报,2012, 32(10):2366-2374.

    YANG L, HAO R X, WU F, et al. Isolation of lead-tolerant fungus and the adsorption effect to Pb2+[J]. Acta Scientiae Circumstantiae,2012, 32(10):2366-2374(in Chinese).

    [23] WU X F, ZHAO F, CHEN M L, et al. Factors affecting the adsorption of Zn2+ and Cd2+ ions from aqueous solution onto vermiculite[J]. Adsorp. Sci. Technol., 2008, 26(3):145-155.
    [24] 张继义, 李金涛, 鲁华涛, 等. 小麦秸秆生物碳质吸附剂从水中吸附硝基苯的机理[J]. 环境科学研究,2012,25(3):333-339.

    ZHANG J Y, LI J T, LU H T, et al. Adsorption mechanism of nitrobenzene by biological carbon sorbent prepared from wheat straw in water[J]. Reserach of Environmental Sciences, 2012, 25(3):333-339(in Chinese).

    [25] 彭婧, 吴晓芙, 李芸, 等.水洗和酸洗蛭石样本的离子吸附性能比较分析[J].中南林业科技大学学报,2012,32(12):78-82.

    PENG J, WU X F, LI Y, et al. Ion adsorption characteristics of water-rinsed and acid-rinsed vermiculite samples[J]. Journal of Central South University of Forestry & Technology, 2012,32(12):78-82(in Chinese).

    [26] 万顺利, 马钊钊, 薛瑶, 等. 氧化锰改性的茶叶渣吸附水体中Pb(Ⅱ)[J]. 环境化学, 2014, 33(12):2198-2205.

    WAN S L, MA Z Z, XUE Y, et al. Study on sorption characteristic of tea waste modified by hydrated manganese oxide toward Pb(Ⅱ) in water[J]. Environmental Chemistry, 2014, 33(12):2198-2205(in Chinese).

    [27] 冀泽华, 吴晓芙, 李芸, 等.水溶液重金属离子在蛭石上的动态吸附行为与化学势变[J].环境化学,2015,34(11):2109-2117.

    JI Z H, WU X F, LI Y, et al. Kinetic adsorption and change in chemical potential of heavy metal ions in aqueous solutions[J]. Environmental Chemistry,2015,34(11):2109-2117(in Chinese).

    [28] 许振, 李云春, 姜友军, 等.核桃壳粉对水溶液中Pb2+的吸附[J].环境工程学报,2012,6(12):4504-4512.

    XU Z, LI Y C, JIANG Y J, et al. Adsorption of Pb2+ from aqueous solution by walnut shell powder[J]. Chinese Journal of Environmental Engineering,2012,6(12):4504-4512(in Chinese).

    [29] SITI N M Y, AZLAN K, WIWID P P, et al. Removal of Cu(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ) ions from aqueous solutions using selected agricultural wastes:Adsorption and characterisation studies[J]. Journal of Environmental Protection, 2014, 5:289-300.
    [30] TAHA M E, ZEINHOM H M, WALIED S, et al. Kinetic and equilibrium isotherms studies of adsorption of Pb(Ⅱ) from water onto natural adsorbent[J]. Journal of Environmental Protection, 2014, 5, 1667-1681.
    [31] WANG L, LI F T, ZHOU Q. Contribution of cell-surface components to Cu2+ adsorption by pseudomonas putida 5-x[J]. Applied Biochemistry and Biotechnology,2006,128:33-46.
  • 加载中
计量
  • 文章访问数:  1735
  • HTML全文浏览数:  1676
  • PDF下载数:  519
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-05-17
  • 刊出日期:  2017-01-15
冀泽华, 冯冲凌, 李刘刚. 粟米糠吸附Pb2+的关键因素交互效应及吸附机理研究[J]. 环境化学, 2017, 36(1): 123-132. doi: 10.7524/j.issn.0254-6108.2017.01.2016051703
引用本文: 冀泽华, 冯冲凌, 李刘刚. 粟米糠吸附Pb2+的关键因素交互效应及吸附机理研究[J]. 环境化学, 2017, 36(1): 123-132. doi: 10.7524/j.issn.0254-6108.2017.01.2016051703
JI Zehua, FENG Chongling, LI Liugang. Adsorption of Pb2+ in aqueous solutions by millet chaff: interactive effects between the key factors and mechanism study[J]. Environmental Chemistry, 2017, 36(1): 123-132. doi: 10.7524/j.issn.0254-6108.2017.01.2016051703
Citation: JI Zehua, FENG Chongling, LI Liugang. Adsorption of Pb2+ in aqueous solutions by millet chaff: interactive effects between the key factors and mechanism study[J]. Environmental Chemistry, 2017, 36(1): 123-132. doi: 10.7524/j.issn.0254-6108.2017.01.2016051703

粟米糠吸附Pb2+的关键因素交互效应及吸附机理研究

  • 1. 中南林业科技大学环境科学与工程研究所, 长沙, 410004
基金项目:

国家“十二五”科技支撑计划项目(2012BAC09B03),湖南省科技计划项目(2015SK20023),湖南省环境科学与工程重点学科建设项目,中南林业科技大学研究生科技创新基金(CX2015B29)资助.

摘要: 采用响应面法(Box-Behnken design,BBD)考察粟米糠吸附Pb2+的不同因素(pH值、Pb2+初始浓度、吸附剂浓度和吸附时间)对吸附过程的影响及交互效应,并通过等温吸附和表征分析研究吸附过程的热力学特征及其吸附机理.结果表明,pH值与Pb2+初始浓度和吸附剂浓度交互效应显著,Pb2+初始浓度与吸附时间的交互效应显著.使用等温吸附模型拟合吸附过程发现,Langmuir和Freundlich模型拟合结果较好,该过程为物理吸附与化学吸附共同作用,293、298、303、308 K条件下的粟米糠最大吸附量qm分别为10.33、10.56、11.10、11.22 mg·g-1,其对Pb2+吸附能力随温度上升而提高.对吸附热力学参数ΔG、ΔH与ΔS计算表明该过程为吸热的自发反应,随反应进行体系混乱度增加.SEM和FTIR分析表明,粟米糠吸附Pb2+前后表面形态发生明显改变,羟基、羧基、醇羟基等基团在粟米糠吸附Pb2+中起主要作用.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回