CeO2/g-C3N4光催化剂的制备及性能
Preparation and photocatalytic performance of CeO2/g-C3N4 photocatalysts
-
摘要: 通过液相沉积法制备了CeO2/g-C3N4复合光催化剂,利用X射线衍射、氮气吸脱附、紫外可见漫反射等方法对其进行了表征,考察了CeO2/g-C3N4复合光催化剂在可见光下降解罗丹明B的光催化活性,并对光催化反应机理进行了初步探讨. 结果表明,复合光催化剂中g-C3N4和CeO2分别为石墨相和萤石相,其中存在堆积介孔结构,随着CeO2掺杂量的增加,CeO2/g-C3N4复合光催化剂的比表面积逐渐增大. CeO2掺杂提高了光生电子-空穴对的分离效率,使得CeO2/g-C3N4复合光催化剂的活性比单纯g-C3N4有所提升,其中CeO2掺杂量为6%的复合光催化剂活性最高,在可见光照射150 min后对罗丹明B染料的降解率可达94%.在复合光催化剂对罗丹明B的降解过程中,光生空穴是主要的活性物种.Abstract: A metal-free g-C3N4 photocatalyst was prepared by calcination method, and the CeO2/g-C3N4 composite photocatalysts were synthesized by deposition of CeO2. The samples were characterized by X-ray diffraction (XRD), nitrogen adsorption and UV-Vis diffuse reflectance spectroscopy (DRS) techniques. The photocatalytic activity and mechanism of the CeO2 doped on g-C3N4 catalysts were tested in the degradation of Rhodamine B (Rh B) under visible light irradiation. The results showed that the g-C3N4 was graphite phase and the CeO2 was fluorite phase in the composite photocatalysts, and the composites had mesoporous structure. The doping of CeO2 increased the surface area of the CeO2/g-C3N4 composite and improved the electron/hole separation efficiency. Compared with the pure g-C3N4, CeO2/g-C3N4 showed higher photocatalytic activity, and the photodegradation rate of Rh B was 94% on the 6% CeO2/g-C3N4 composite with visible light irradiation for 150 min. The photogenerated holes on the composite are the main active species in the photocatalytic degradation of Rh B.
-
Key words:
- visible light photocatalysis /
- graphite carbon nitride /
- cerium dioxide /
- doping /
- Rhodamine B
-
[1] HONG Y, JIANG Y, LI C, et al. In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants[J]. Applied Catalysis B:Environmental, 2016, 180:663-673. [2] KATSUMATA H, SAKAI T, SUZUKI T, et al. Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light[J]. Industrial & Engineering Chemistry Research, 2014, 53(19):8018-8025. [3] 尹佳芝,黄少斌,简子聪,等. TiO2/Li4Ti5O12/Na2Ti6O13复合催化剂的制备、表征及其光催化活性[J]. 环境化学,2014,33(8):1373-1378. YIN J Z, HUANG S B, JIAN Z C, et al. Synthesis, characterization and photocatalytic activity of TiO2/Li4Ti5O12/Na2Ti6O13 composites[J]. Environmental Chemistry, 2014, 33(8):1373-1378(in Chinese).
[4] KONDO K, MURAKAMI N, CHEN Y, et al. Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride[J]. Applied Catalysis B:Environmental, 2013, 142-143(10):362-367. [5] JO W K, NATARAJAN T S. Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation[J]. Chemical Engineering Journal, 2015, 283:549-565. [6] ZHAO G, HUANG X, FINA F, et al. Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light[J]. Catalysis Science & Technology, 2015, 5(6):3416-3422. [7] HE Y, ZHANG L, TENG B, et al. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel[J]. Environmental Science & Technology, 2015, 49(1):649-656. [8] 齐跃红,刘利,梁英华,等. 类石墨相C3N4复合光催化剂[J]. 化学进展,2015,27(1):38-46. QI Y H, LIU L, LIANG Y H, et al. Graphitic carbon nitride commpound photocatalyst[J]. Progress in Chemistry, 2015, 27(1):38-46(in Chinese).
[9] 张健,王彦娟,胡绍争. 钾离子掺杂对石墨型氮化碳光催化剂能带结构及催化性能的影响[J]. 物理化学学报,2015,31(1):159-165. ZHANG J, WANG Y J, HU S Z. Effect of K+ doping in the band structure and photocatalytic performance of graphitic carbon nitride photocatalysts[J]. Acta Physical-Chimica Sinica, 2015, 31(1):159-165(in Chinese).
[10] SHI F, CHEN L, CHEN M, et al. Ag-C3N4/nanocarbon/ZnIn2S4 nanocomposite:an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator[J]. Chemical Communications, 2015, 51(96):17144-17147. [11] YANG Y, GUO W, GUO Y, et al. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity[J]. Journal of Hazardous Materials, 2014, 271(5):150-159. [12] LIAO W, MURUGANANTHAN M, ZHANG Y. Synthesis of Z-scheme g-C3N4-Ti3+/TiO2 material:An efficient visible light photoelectrocatalyst for degradation of phenol[J]. Physical Chemistry Chemical Physics, 2015, 17(14):8877-8884. [13] HE Y, ZHANG L, FAN M, et al. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction[J]. Solar Energy Materials & Solar Cells, 2015, 137:175-184. [14] 金瑞瑞,游继光,张倩,等. Fe掺杂g-C3N4的制备及其可见光催化性能[J]. 物理化学学报,2014,30(9):1706-1712. JIN R R, YOU J G, ZHANG Q, et al. Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Acta Physical-Chimica Sinica, 2014, 30(9):1706-1712(in Chinese).
[15] 孙爱武,陈欢,宋春艳,等. Bi25FeO40-g-C3N4磁性催化剂的制备及其可见光催化性能[J]. 环境化学,2015,32(5):748-754. SUN A W, CHEN H, SONG C Y, et al. Preparation of magnetic Bi25FeO40-g-C3N4 catalyst and its high visible-light photocatalytic performance[J]. Environmental Chemistry, 2015, 32(5):748-754(in Chinese).
[16] 黄驰,顾桂山,王亚楠,等. Ce/TiO2/Fe3O4粒子电极光电催化降解藏红T模拟染料废水[J]. 环境化学,2015,34(5):995-1001. HUANG C, GU G S, WANG Y N, et al. photoelectrochemical catalytic degradation of safranine T with Ce/TiO2/Fe3O4 particle electrodes[J]. Environmental Chemistry, 2015, 34(5):995-1001(in Chinese).
[17] 井立强,孙晓君,蔡伟民,等. 掺杂Ce的TiO2纳米粒子的光致发光及其光催化活性[J]. 化学学报,2003,61(8):1241-1245. JING L Q, SUN X J, CAI W M, et al. Photoluminescence of Ce doped TiO2 nanoparticles and their photocatalytic activity[J]. Acta Chimica Sinica, 2003, 61(8):1241-1245(in Chinese).
[18] 余长林,杨凯,余济美,等. 稀土Ce掺杂对ZnO结构和光催化性能的影响[J]. 物理化学学报,2011,27(2):505-512. YU C L, YANG K, YU J C, et al. Effects of rare earth Ce doping on the structure and photocatalytic performance of ZnO[J]. Acta Physical-Chimica Sinica, 2011, 27(2):505-512(in Chinese).
[19] CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13):2150-2176. [20] 李跃军,草铁平,王长华,等. CeO2/TiO2复合纳米纤维的制备及光催化性能研究[J]. 化学学报,2011,69(21):2597-2602. LI Y J, CAO T P, WANG C H, et al. Fabrication and enhanced photocatalytic properties of CeO2/TiO2 composite nanofibers[J]. Acta Chimica Sinica, 2011, 69(21):2597-2602(in Chinese).
[21] 黄立英. 可见光响应型石墨相氮化碳复合材料的制备及其降解有机污染物研究[D]. 镇江:江苏大学,2013. HUANG L Y. Synthesis and photocatalytic activities of graphite-like carbon nitride composites with visible light response[D]. Zhenjiang:Jiangsu University, 2013(in Chinese).
计量
- 文章访问数: 2901
- HTML全文浏览数: 2796
- PDF下载数: 794
- 施引文献: 0