四氢呋喃部分氧化制乙炔和合成气:热化学平衡分析

鞠耀明, 袁从慧, 林阳春, 王鹏, 丁慧勇, 谢黎明. 四氢呋喃部分氧化制乙炔和合成气:热化学平衡分析[J]. 环境化学, 2017, 36(1): 153-158. doi: 10.7524/j.issn.0254-6108.2017.01.2016042003
引用本文: 鞠耀明, 袁从慧, 林阳春, 王鹏, 丁慧勇, 谢黎明. 四氢呋喃部分氧化制乙炔和合成气:热化学平衡分析[J]. 环境化学, 2017, 36(1): 153-158. doi: 10.7524/j.issn.0254-6108.2017.01.2016042003
JU Yaoming, YUAN Conghui, LIN Yangchun, WANG Peng, DING Huiyong, XIE Liming. Thermodynamic analysis for acetylene and syngas production via tetrahydrofuran partial oxidation[J]. Environmental Chemistry, 2017, 36(1): 153-158. doi: 10.7524/j.issn.0254-6108.2017.01.2016042003
Citation: JU Yaoming, YUAN Conghui, LIN Yangchun, WANG Peng, DING Huiyong, XIE Liming. Thermodynamic analysis for acetylene and syngas production via tetrahydrofuran partial oxidation[J]. Environmental Chemistry, 2017, 36(1): 153-158. doi: 10.7524/j.issn.0254-6108.2017.01.2016042003

四氢呋喃部分氧化制乙炔和合成气:热化学平衡分析

  • 基金项目:

    浙江省环保厅科研计划项目(2016A005)资助.

Thermodynamic analysis for acetylene and syngas production via tetrahydrofuran partial oxidation

  • Fund Project: Supported by Scientific Research Fund of Zhejiang Province Environmental Protection Department(2016A005).
  • 摘要: 采用Gibbs自由能最小化法对四氢呋喃(THF)部分氧化制乙炔和合成气反应进行热化学平衡计算.考察了温度、氧燃比(n(O2)∶n(THF))和压力等因素对THF部分氧化制乙炔和合成气反应产物的影响.实验结果表明,随温度升高,乙炔、合成气含量及氢碳比(n(H2)∶n(CO))明显增大,CH4和C2H4含量先增大后减小,C2H6含量显著减小;1200-1500℃时,乙炔和合成气含量较高,氢碳比较稳定,有利于乙炔和合成气的制备;温度大于1200℃时,随氧燃比的增加,乙炔含量减小,合成气含量增加,在氧燃比0.02-0.10时较为适宜;随压力增加,乙炔和合成气含量减小,C2H4和C2H6含量增加,低压有利于乙炔和合成气的制备.在1200-1500℃、氧燃比为0.10、常压条件下,乙炔和合成气含量最高、氢碳比2.1、副产物含量为0.
  • 加载中
  • [1] 李庆勋, 刘业飞, 王铁峰.甲烷非催化部分氧化制乙炔和合成气过程的实验研究[J].过程工程学报,2010,10(3):536-541.

    LI Q X, LIU Y F WANG T F. Experimental study on non-catalytic partial oxidation of methane to acetylene and syngas[J]. The Chinese Journal of Process Engineering, 2010, 10(3):536-541(in Chinese).

    [2] LIU Y F, WANG T F, LI Q X, et al. A study of acetylene production by methane flaming in a partial oxidation reactor[J].Chinese Journal of Chemical Engineering, 2011, 19(3):424-433.
    [3] GENTILLON P, TOLEDO M.Hydrogen and syngas production from propane and polyethylene[J]. International Journal of Hydrogen Energy, 2013, 38(22):9223-9228.
    [4] MOSAYEBI A, ABEDINI R. Partial oxidation of butane to syngas using nano-structure Ni/zeolite catalysts[J].Journal of Industrial and Engineering Chemistry, 2014, 20(4):1542-1548.
    [5] TRAN L S, VERDICCHIO M, MONGE F, et al. An experimental and modeling study of the combustion of tetrahydrofuran[J]. Combustion and Flame, 2015, 162(5):1899-1918.
    [6] ZAINAL Z A, ALI R, LEAN C H, et al. Prediction of the performance of a downdraft gasifier using equilibrium modeling for different biomass materials[J].Energy Conversion and Management, 2001, 42(12):1499-1515.
    [7] WHITE W B, JHONSON S M, DANTZIG G B. Chemical equilibrium in complex mixture[J]. Journal of Chemical Physics, 1958, 28:751-760.
    [8] 钱红亮, 杨婷婷, 刘畅, 等. 木材热解过程的热化学平衡分析[J]. 化工学报, 2014, 65(5):1622-1628.

    QIAN H L, YANG T T, LIU C, et al. Thermochemical equilibrium analysis for wood pyrolysis[J]. CIESC Journal, 2014, 65(5):1622-1628(in Chinese).

    [9] TANG H Q, KITAGAWA K. Supercritical water gasification of biomass:Thermodynamic analysis with direct Gibbs free energy minimization[J].Chemical Engineering Journal, 2005, 106(3):261-267.
    [10] 刘敬勇, 孙水裕. 污泥焚烧中铅的形态转化及脱除的热力学平衡研究[J].高等学校化学学报,2010,31(8):1605-1613.

    LIU J Y, SUN S Y. Thermodynamic equilibrium analysis of transformation and removal of lead during sludge incineration[J].Chemical Journal of Chinese Universities, 2010, 31(8):1605-1613(in Chinese).

    [11] 徐月亭, 代正华, 李超, 等. 天然气非催化部分氧化转化炉模拟[J].高校化学工程学报, 2014, 28(6):1249-1254.

    XU Y T, DAI Z H, LI C, et al. Simulations studies on non-catalytic partial oxidation reformer for natural gas[J].Journal of Chemical Engineering of Chinese Universities. 2014, 28(6):1249-1254(in Chinese).

  • 加载中
计量
  • 文章访问数:  1820
  • HTML全文浏览数:  1763
  • PDF下载数:  482
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-04-20
  • 刊出日期:  2017-01-15
鞠耀明, 袁从慧, 林阳春, 王鹏, 丁慧勇, 谢黎明. 四氢呋喃部分氧化制乙炔和合成气:热化学平衡分析[J]. 环境化学, 2017, 36(1): 153-158. doi: 10.7524/j.issn.0254-6108.2017.01.2016042003
引用本文: 鞠耀明, 袁从慧, 林阳春, 王鹏, 丁慧勇, 谢黎明. 四氢呋喃部分氧化制乙炔和合成气:热化学平衡分析[J]. 环境化学, 2017, 36(1): 153-158. doi: 10.7524/j.issn.0254-6108.2017.01.2016042003
JU Yaoming, YUAN Conghui, LIN Yangchun, WANG Peng, DING Huiyong, XIE Liming. Thermodynamic analysis for acetylene and syngas production via tetrahydrofuran partial oxidation[J]. Environmental Chemistry, 2017, 36(1): 153-158. doi: 10.7524/j.issn.0254-6108.2017.01.2016042003
Citation: JU Yaoming, YUAN Conghui, LIN Yangchun, WANG Peng, DING Huiyong, XIE Liming. Thermodynamic analysis for acetylene and syngas production via tetrahydrofuran partial oxidation[J]. Environmental Chemistry, 2017, 36(1): 153-158. doi: 10.7524/j.issn.0254-6108.2017.01.2016042003

四氢呋喃部分氧化制乙炔和合成气:热化学平衡分析

  • 1.  浙江环境监测工程有限公司, 杭州, 310015;
  • 2.  浙江省环境监测中心, 杭州, 310015;
  • 3.  浙江立德产品技术有限公司, 杭州, 311215
基金项目:

浙江省环保厅科研计划项目(2016A005)资助.

摘要: 采用Gibbs自由能最小化法对四氢呋喃(THF)部分氧化制乙炔和合成气反应进行热化学平衡计算.考察了温度、氧燃比(n(O2)∶n(THF))和压力等因素对THF部分氧化制乙炔和合成气反应产物的影响.实验结果表明,随温度升高,乙炔、合成气含量及氢碳比(n(H2)∶n(CO))明显增大,CH4和C2H4含量先增大后减小,C2H6含量显著减小;1200-1500℃时,乙炔和合成气含量较高,氢碳比较稳定,有利于乙炔和合成气的制备;温度大于1200℃时,随氧燃比的增加,乙炔含量减小,合成气含量增加,在氧燃比0.02-0.10时较为适宜;随压力增加,乙炔和合成气含量减小,C2H4和C2H6含量增加,低压有利于乙炔和合成气的制备.在1200-1500℃、氧燃比为0.10、常压条件下,乙炔和合成气含量最高、氢碳比2.1、副产物含量为0.

English Abstract

参考文献 (11)

返回顶部

目录

/

返回文章
返回