氚水对蚕豆根尖的诱变效应

邓冰, 全旖, 穆龙, 谭昭怡. 氚水对蚕豆根尖的诱变效应[J]. 环境化学, 2017, 36(3): 508-513. doi: 10.7524/j.issn.0254-6108.2017.03.2016041202
引用本文: 邓冰, 全旖, 穆龙, 谭昭怡. 氚水对蚕豆根尖的诱变效应[J]. 环境化学, 2017, 36(3): 508-513. doi: 10.7524/j.issn.0254-6108.2017.03.2016041202
DENG Bing, QUAN Yi, MU Long, TAN Zhaoyi. Micronuclei induced by HTO in Vicia faba[J]. Environmental Chemistry, 2017, 36(3): 508-513. doi: 10.7524/j.issn.0254-6108.2017.03.2016041202
Citation: DENG Bing, QUAN Yi, MU Long, TAN Zhaoyi. Micronuclei induced by HTO in Vicia faba[J]. Environmental Chemistry, 2017, 36(3): 508-513. doi: 10.7524/j.issn.0254-6108.2017.03.2016041202

氚水对蚕豆根尖的诱变效应

  • 基金项目:

    核物理与化学研究所创新基金(2013CX02)和中国工程物理研究院科学技术发展基金(2014B0101035)资助.

Micronuclei induced by HTO in Vicia faba

  • Fund Project: Supported by the Innovation Fund of Institute of Nuclear Physics and Chemistry(2013CX02) and Science and Technology Development Fund of China Academy of Engineering Physics (2014B0101035).
  • 摘要: 通过蚕豆根尖细胞微核率的变化来研究氚水β射线的对蚕豆根尖的诱变效应,探索微核率作为测定氚水引起细胞损伤指标的可能性.将蚕豆根尖置于不同活度的氚水中培养24 h后,收获蚕豆根尖细胞得到与氚水作用后细胞微核率并将实验结果进行回归方程拟合,得到HTO β射线的最佳回归方程是Y=0.90+4.64x,细胞微核剂量-效应关系符合线性拟合方程.得到相对60Coγ射线,氚水(HTO)β射线诱发微核的相对生物效应(Relative biological effectiveness RBE)值在0.57-1.43之间.在所研究的较低剂量范围0-2 Gy以内,HTO β射线对生物体的作用更加明显;微核的产生主要是由于在低剂量情况下HTO β射线在一个电离辐射径迹上使两个染色单体各产生一个损伤的效率更高.
  • 加载中
  • [1] CRIST N. Filer. Tritium labelled photoaffinity agents[J]. Radioanal Nucl Chem, 2009, 281:521-530.
    [2] LASSAAD D. Use of chloride mass balance and tritium data for estimation of groundwater recharge and renewal rata in an unconfined aquifer from North Africa:Case study from Tunisia[J].Environ Earth, 2010, 60:861-871.
    [3] IAEA. International basic safety standards for protection against ionizing radiation and for the safety of radiation sources IAEA safety, series No.115[R].Vienna, 1996.
    [4] GALERIU D, MELINTESCU A, TAKEDA H. Risk from tritium exposure[J]. IRPA, Regional Congress for Central and Eastern Europe, 2007,9:24-28.
    [5] ALEXANDER G, SWARTZ H M, AMUNDSON S A. et al. Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents[J]. Radiation Measurements, 2007, 42:972-996.
    [6] BALAKRISHNAN S, SHIRSATH K, BATH N. Biodosimetry for high dose accidental exposures by drug induced premature chromosome condensation (PCC) assay[J]. Mutation Research, 2010, 699:11-16.
    [7] BLAKELY W F, CARR Z, CHIN C M, et al. WHO 1st Consultation on the development of a Global biodosimetry laboratories network for radiation emergencies (BioDoseNet)[J]. Radiation Research, 2007, 171:127-139.
    [8] DECODIER I, PAPINE A, PLAS G, et al. Automated image analysis of cytokinesis-blocked micronuclei:An adapted protocol and a validated scoring procedure for biomonitoring[J]. Mutagenesis, 2009, 24:85-93.
    [9] FENECH M. The lymphocyte cytokinesis-block micronucleus cytome assay and 1st application in radiation biodosimetry[J]. Health Phys, 2010, 98:234-243.
    [10] GONZALEZ A J. An international perspective on radiological threats and the need for retrospective biological dosimetry of acute radiation overexposures[J]. Radiation Measurements, 2007, 42:1053-1062.
    [11] IAEA. Cytogenetic analysis for radiation dose assessment. A manual//Technical reports series No. 405[R]. International Atomic Energy Agency, Vienna, 2001.
    [12] IAEA. Generic procedures response during a nuclear or radiological emergency[R]. EPR-MEDICAL. IAEA, Vienna, Austria, 2005.
    [13] BALONOV M I, LIKHATAREV I A, MOSKALEV I Y. The metabolism of 3H compounds and limits for intakes by workers[J]. Health Physics. 1984,47(5):761.
    [14] SVENSSON H, HANSON G P, ZADANZKY K. The IAEA/WHO TL dosimetry service for radiotherapy centres[J]. Acta Oncologica, 1990, 29(4):461-467.
    [15] SREEDVI B, SHANKAANAAYANAN N, RAO B S. The induction of micronuclei and chromosomal aberrations in human lymphocytes irradiated in vitro with fission neutrons[J]. Radiation Protection and Environment, 1997,20(1):21-25.
    [16] BENDER M L. Molecular Biochemistry[J]. Science, 1962, 138(3541):672.
    [17] DOBSON R L. Health effects of low level radiation:Carcinogenesis, teratogenesis, and mutagenesis effects of low level radiation[J]. Seminars in Nuclear Medicine, 1986, 16(2):106-117.
    [18] IAEA. Biological dosimetry:Chromosomal aberration analysis for dose assessment. Technical Report Series, No. 26[R]. IAEA, Vienna, 1986.
    [19] ANDERSON V, MA T H. Micronuclei induced by low-dose cobalt-60 gamma-irradiation in Tradescantia pollen mother cells[J]. Environmental Mutagenesis 1982, 16(4):342-348.
    [20] CEBULSKA W A. Tradescantia stamen-hair mutation bioassay on the mutagenicity of radioisotope-contaminated air following the chernobyl nuclear accident and one year later[J]. Mutation Research, 1992, 270:23-29.
    [21] ICHIKAWA S. Tradescantia stamen-hair system as an excellent botanical tester of mutagenicity:Its responses to ionizing radiations and chemical mutagens, and some synergistic effects found[J]. Mutation Research,1992, 270(1):3-22.
  • 加载中
计量
  • 文章访问数:  556
  • HTML全文浏览数:  489
  • PDF下载数:  358
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-04-12
  • 刊出日期:  2017-03-15
邓冰, 全旖, 穆龙, 谭昭怡. 氚水对蚕豆根尖的诱变效应[J]. 环境化学, 2017, 36(3): 508-513. doi: 10.7524/j.issn.0254-6108.2017.03.2016041202
引用本文: 邓冰, 全旖, 穆龙, 谭昭怡. 氚水对蚕豆根尖的诱变效应[J]. 环境化学, 2017, 36(3): 508-513. doi: 10.7524/j.issn.0254-6108.2017.03.2016041202
DENG Bing, QUAN Yi, MU Long, TAN Zhaoyi. Micronuclei induced by HTO in Vicia faba[J]. Environmental Chemistry, 2017, 36(3): 508-513. doi: 10.7524/j.issn.0254-6108.2017.03.2016041202
Citation: DENG Bing, QUAN Yi, MU Long, TAN Zhaoyi. Micronuclei induced by HTO in Vicia faba[J]. Environmental Chemistry, 2017, 36(3): 508-513. doi: 10.7524/j.issn.0254-6108.2017.03.2016041202

氚水对蚕豆根尖的诱变效应

  • 1. 中国工程物理研究院, 核物理与化学研究所, 绵阳, 621900
基金项目:

核物理与化学研究所创新基金(2013CX02)和中国工程物理研究院科学技术发展基金(2014B0101035)资助.

摘要: 通过蚕豆根尖细胞微核率的变化来研究氚水β射线的对蚕豆根尖的诱变效应,探索微核率作为测定氚水引起细胞损伤指标的可能性.将蚕豆根尖置于不同活度的氚水中培养24 h后,收获蚕豆根尖细胞得到与氚水作用后细胞微核率并将实验结果进行回归方程拟合,得到HTO β射线的最佳回归方程是Y=0.90+4.64x,细胞微核剂量-效应关系符合线性拟合方程.得到相对60Coγ射线,氚水(HTO)β射线诱发微核的相对生物效应(Relative biological effectiveness RBE)值在0.57-1.43之间.在所研究的较低剂量范围0-2 Gy以内,HTO β射线对生物体的作用更加明显;微核的产生主要是由于在低剂量情况下HTO β射线在一个电离辐射径迹上使两个染色单体各产生一个损伤的效率更高.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回