改性零价铁降解多溴二苯醚的研究进展

韩文亮, 陈海明, 陈兴童. 改性零价铁降解多溴二苯醚的研究进展[J]. 环境化学, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
引用本文: 韩文亮, 陈海明, 陈兴童. 改性零价铁降解多溴二苯醚的研究进展[J]. 环境化学, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
HAN Wenliang, CHEN Haiming, CHEN Xingtong. Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron[J]. Environmental Chemistry, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
Citation: HAN Wenliang, CHEN Haiming, CHEN Xingtong. Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron[J]. Environmental Chemistry, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801

改性零价铁降解多溴二苯醚的研究进展

  • 基金项目:

    国家自然科学基金(41203077),福建省自然科学基金(2011J05112),泉州市科技计划(2012Z85)和华侨大学引进人才启动项目(11BS216)资助.

Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron

  • Fund Project: Supported by the National Natural Science Foundation of China (41203077), the Natural Science Foundation of Fujian Province, China (2011J05112), the Science and Technology Project of Quanzhou,China (2012Z85) and the Start-Up Project for Talents of Huaqiao University (11BS216).
  • 摘要: 多溴二苯醚(PBDEs)是一类持久性有机污染物(POPs),其无害降解技术是一个研究热点.PBDEs的降解方法包括生物降解、光降解、电解降解、零价铁(ZVI)还原降解、Fenton试剂氧化降解等.其中,零价铁因其优良的还原性能,被逐渐应用于PBDEs等POPs的还原降解,但零价铁因比表面积小、易团聚、易氧化等缺点,需通过改性以改善其降解效果.本文重点从减小铁颗粒粒径、应用搭载系统、加入活性金属、添加表面活性剂、使用辅助手段(超声或微波等)等5个方面综述了改性零价铁降解PBDEs的研究进展,讨论了各改性方法的优缺点,介绍了卤代有机污染物脱卤产物的后续降解方法,并展望了今后的研究重点.
  • 加载中
  • [1] ABBASI G, BUSER A M, SOEHL A, et al. Stocks and flows of PBDEs in products from use to waste in the U.S. and Canada from 1970 to 2020[J]. Environmental Science & Technology, 2015, 49(3): 1521-1528.
    [2] CHOI J, JANG Y C, KIM J G. Substance flow analysis and environmental releases of PBDEs in life cycle of automobiles[J]. Science of the Total Environment, 2017, 574: 1085-1094.
    [3] EZZATAHMADI N, AYOKO G A, MILLAR G J, et al. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review[J]. Chemical Engineering Journal, 2017, 312: 336-350.
    [4] HAN W L, FAN T, XU B H, et al. Passive sampling of polybrominated diphenyl ethers in indoor and outdoor air in Shanghai, China: Seasonal variations, sources, and inhalation exposure[J]. Environmental Science and Pollution Research, 2016, 23(6): 5771-5781.
    [5] 韩文亮,刘豫,陈海明,等. 厦门室内多溴二苯醚的沉降通量、季节变化与人体暴露水平[J]. 环境科学, 2016, 37(3): 834-846.

    HAN W L, LIU Y, CHEN H M, et al. Indoor deposition flux, seasonal variations and human exposure levels of polybrominated diphenyl ethers in Xiamen, China[J]. Environmental Science, 2016, 37(3): 834-846 (in Chinese).

    [6] 韩文亮,陈海明,陈兴童. 厦门室内降尘的沉降通量与季节变化[J]. 环境化学, 2016, 35(3): 491-499.

    HAN W L, CHEN H M, CHEN X T. Deposition flux and seasonal variations of indoor dustfall in Xiamen,China[J]. Environmental Chemistry, 2016, 35(3): 491-499 (in Chinese).

    [7] 鲍彦,尹帅星,张磊,等. 中国居民多溴联苯醚的膳食暴露水平和风险评估[J]. 环境化学, 2016, 35(6): 1172-1179.

    BAO Y, YIN S X, ZHANG L, et al. Dietary intake and risk assessment for polybrominated diphenyl ethers in China[J]. Environmental Chemistry, 2016, 35(6): 1172-1179 (in Chinese).

    [8] AKORTIA E, OKONKWO J O, LUPANKWA M, et al. A review of sources, levels, and toxicity of polybrominated diphenyl ethers (PBDEs) and their transformation and transport in various environmental compartments[J]. Environmental Reviews, 2016, 24(3): 253-273.
    [9] LYCHE J L, ROSSELAND C, BERGE G, et al. Human health risk associated with brominated flame-retardants (BFRs)[J]. Environment International, 2015, 74: 170-180.
    [10] COSTA L G, de LAAT R, TAGLIAFERRI S, et al. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity[J]. Toxicology Letters, 2014, 230(2): 282-294.
    [11] SU G Y, LETCHER R J, CRUMP D, et al. Sunlight irradiation of highly brominated polyphenyl ethers generates polybenzofuran products that alter dioxin-responsive mRNA expression in chicken hepatocytes[J]. Environmental Science & Technology, 2016, 50(5): 2318-2327.
    [12] 孙文文,周林,韩文亮,等. 电子垃圾拆解对台州氯代/溴代二英浓度和组成的影响[J]. 生态毒理学报, 2016, 11(2): 330-338.

    SUN W W, ZHOU L, HAN W L, et al. Impact of e-waste dismantling activities on the levels and compositions of PCDD/Fs and PBDD/Fs in the atmosphere of Taizhou[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 330-338 (in Chinese).

    [13] TAN L, LU S Y, FANG Z Q, et al. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 200: 200-210.
    [14] PANG Z H, YAN M Y, JIA X S, et al. Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: Preparation, characterization and influence factors[J]. Journal of Environmental Sciences, 2014, 26(2): 483-491.
    [15] CHOW K L, MAN Y B, TAM N F Y, et al. Removal of decabromodiphenyl ether (BDE-209) using a combined system involving TiO2 photocatalysis and wetland plants[J]. Journal of Hazardous Materials, 2017, 322: 263-269.
    [16] CHEN J, WANG C, SHEN Z J, et al. Insight into the long-term effect of mangrove species on removal of polybrominated diphenyl ethers (PBDEs) from BDE-47 contaminated sediments[J]. Science of the Total Environment, 2017, 575: 390-399.
    [17] DENG D Y, LIU J, XU M Y, et al. Uptake, translocation and metabolism of decabromodiphenyl ether (BDE-209) in seven aquatic plants[J]. Chemosphere, 2016, 152: 360-368.
    [18] WAAIJERS S L, PARSONS J R. Biodegradation of brominated and organophosphorus flame retardants[J]. Current Opinion in Biotechnology, 2016, 38: 14-23.
    [19] WANG L Q, LI Y, ZHANG W L, et al. Isolation and characterization of two novel psychrotrophic decabromodiphenyl ether-degrading bacteria from river sediments[J]. Environmental Science and Pollution Research, 2016, 23(11): 10371-10381.
    [20] TANG S Y, YIN H, CHEN S N, et al. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process[J]. Journal of Hazardous Materials, 2016, 308: 335-342.
    [21] WEI H, ZOU Y H, LI A, et al. Photolytic debromination pathway of polybrominated diphenyl ethers in hexane by sunlight[J]. Environmental Pollution, 2013, 174: 194-200.
    [22] SUN C Y, CHANG W, MA W H, et al. Photoreductive debromination of decabromodiphenyl ethers in the presence of carboxylates under visible light irradiation[J]. Environmental Science & Technology, 2013, 47(5): 2370-2377.
    [23] LEI M, WANG N, ZHU L H, et al. A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide-TiO2 photocatalyst[J]. Chemical Engineering Journal, 2014, 241: 207-215.
    [24] LIU Y M, CHEN S, QUAN X, et al. Nitrogen-doped nanodiamond rod array electrode with superior performance for electroreductive debromination of polybrominated diphenyl ethers[J]. Applied Catalysis B: Environmental, 2014, 154-155: 206-212.
    [25] 赵世岩. 碳纳米管修饰电极对PCBs和PBDEs的电催化还原脱卤[D]. 大连: 大连理工大学, 2009. ZHAO S Y. Electrocatalytic reductive dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers by modified carbon nanotubes electrode[D]. Dalian: Dalian University of Technology, 2009 (in Chinese).
    [26] 孙云娜. 铁炭微电解耦合Fenton试剂降解十溴联苯醚(BDE-209)的实验研究[D].兰州: 兰州交通大学, 2012. SUN Y N. Study on deca-brominated diphenyl ethers (BDE209) by iron-carbon micro-electrolysis immobilized fenton processes[D]. Lanzhou: Lanzhou Jiaotong University, 2012 (in Chinese).
    [27] LUO S, YANG S G, XUE Y G, et al. Two-stage reduction/subsequent oxidation treatment of 2,2',4,4'-tetrabromodiphenyl ether in aqueous solutions: Kinetic, pathway and toxicity[J]. Journal of Hazardous Materials, 2011, 192(3): 1795-1803.
    [28] FANG Z Q, QIU X H, CHEN J H, et al. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor[J]. Desalination, 2011, 267(1): 34-41.
    [29] YU K, GU C, BOYD S A, et al. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron[J]. Environmental Science & Technology, 2012, 46(16): 8969-8975.
    [30] LUO S, YANG S G, SUN C, et al. Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy[J]. Science of the Total Environment, 2012, 429: 300-308.
    [31] QIU X H, FANG Z Q, LIANG B, et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres[J]. Journal of Hazardous Materials, 2011, 193: 70-81.
    [32] LIU Z T, GU C G, YE M, et al. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism[J]. Journal of Hazardous Materials, 2015, 298: 328-337.
    [33] XIE Y Y, CHENG W, TSANG P E, et al. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres[J]. Journal of Environmental Management, 2016, 166: 478-483.
    [34] ORTH W S, GILLHAM R W. Dechlorination of trichloroethene in aqueous solution using Fe0[J]. Environmental Science & Technology, 1996, 30(1): 66-71.
    [35] FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205.
    [36] MATHESON L J, TRATNYEK P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12): 2045-2053.
    [37] 杨凤林,全燮,薛大明,等. 水中氯代有机化合物处理方法及研究进展[J]. 环境科学进展, 1996, 4(6): 36-44.

    YANG F L, QUAN X, XUE D M, et al. Advance of disposal of chlorinated organic compounds in water[J]. Advances in Environmental Science, 1996, 4(6): 36-44 (in Chinese).

    [38] 全燮,刘会娟,杨凤林,等. 二元金属体系对水中多氯有机物的催化还原脱氯特性[J]. 中国环境科学, 1998, 18(4): 333-336.

    QUAN X, LIU H J, YANG F L, et al. Dechlorination of three polychlorinated hydrocarbons in water using bimetallic systems[J]. China Environmental Science, 1998, 18(4): 333-336 (in Chinese).

    [39] 明磊强,何义亮,章敏,等. 零价铁降解多溴联苯醚影响条件的研究[J]. 净水技术, 2010, 29(2): 49-52.

    MING L Q, HE Y L, ZHANG M, et al. Studies on effect conditions for removal of polybrominated diphenyl ethers by zero-valent iron[J]. Water Purification Technology, 2010, 29(2): 49-52 (in Chinese).

    [40] KEUM Y S, LI Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science & Technology, 2005, 39(7): 2280-2286.
    [41] SHIH Y H, TAI Y T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles[J]. Chemosphere, 2010, 78(10): 1200-1206.
    [42] ZAHRAN E M, BHATTACHARYYA D, BACHAS L G. Reactivity of Pd/Fe bimetallic nanotubes in dechlorination of coplanar polychlorinated biphenyls[J]. Chemosphere, 2013, 91(2): 165-171.
    [43] FANG Z Q, QIU X H, CHEN J H, et al. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism[J]. Journal of Hazardous Materials, 2011, 185(2-3): 958-969.
    [44] LUO S, YANG S G, WANG X D, et al. Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation[J]. Chemosphere, 2010, 79(6): 672-678.
    [45] LIANG D W, YANG Y H, XU W W, et al. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: Mechanism and kinetics[J]. Journal of Hazardous Materials, 2014, 278: 592-596.
    [46] 刘静,刘爱荣,张伟贤. 纳米零价铁及其在环境介质中氧化后性质演变研究进展[J]. 环境化学, 2014, 33(4): 576-583.

    LIU J, LIU A R, ZHANG W X. Review on transformation of oxidized nanoscale zero valent iron in environment media[J]. Environmental Chemistry, 2014, 33(4): 576-583 (in Chinese).

    [47] 琚丽婷. 蒙脱石负载零价纳米铁镍或纳米铁银双金属处理三氯生的研究[D]. 广州: 华南理工大学, 2013. JU L T. Montmorillonite-supported zero-valent Fe/Ni or Fe/Ag bimetallic particles and their application for the removal of triclosan[D]. Guangzhou: South China University of Technology, 2013 (in Chinese).
    [48] TU J J, YANG Z D, HU C, et al. Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation[J]. Journal of Environmental Sciences, 2014, 26(5): 1154-1161.
    [49] WEI J J, QIAN Y J, LIU W J, et al. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe[J]. Journal of Environmental Sciences, 2014, 26(5): 1162-1170.
    [50] SANTOS M S F, ALVES A, MADEIRA L M. Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems: A review[J]. Water Research, 2016, 88: 39-59.
    [51] MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(5): 443-466.
    [52] TOMIZAWA M, KUROSU S, KOBAYASHI M, et al. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals[J]. Journal of Environmental Management, 2016, 183: 478-487.
    [53] 李亚浦. 多溴联苯醚的降解及其机理研究[D]. 上海: 华东理工大学, 2010. LI Y P. Study on degradation techniques of PBDEs and its possible mechanism[D]. Shanghai: East China University of Science and Technology, 2010 (in Chinese).
    [54] 罗斯. 还原-氧化两步处理法降解水中典型溴代阻燃剂的研究[D]. 南京: 南京大学, 2011. LUO S. Two-stage reduction/subsequent oxidation treatment of brominated flame retardants in aqueous solutions[D]. Nanjing: Nanjing University, 2011 (in Chinese).
    [55] XIE Y Y, FANG Z Q, QIU X H, et al. Comparisons of the reactivity, reusability and stability of four different zero-valent iron-based nanoparticles[J]. Chemosphere, 2014, 108: 433-436.
    [56] ZHUANG Y, AHN S, SEYFFERTH A L, et al. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron[J]. Environmental Science & Technology, 2011, 45(11): 4896-4903.
    [57] SCHRICK B, BLOUGH J L, JONES A D, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chemistry of Materials, 2002, 14(12): 5140-5147.
    [58] ZHUANG Y, AHN S, LUTHY R G. Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: Pathways, kinetics, and reactivity[J]. Environmental Science & Technology, 2010, 44(21): 8236-8242.
    [59] ZHU B W, LIM T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration[J]. Environmental Science & Technology, 2007, 41(21): 7523-7529.
    [60] 杨雨寒,徐伟伟,彭思侃,等. 纳米零价铁降解水中多溴联苯醚(PBDEs)及降解途径研究[J]. 环境科学, 2014, 35(3): 964-971.

    YANG Y H, XU W W, PENG S K, et al. Reductive debromination of polybrominated diphenyl ethers in aquifier by nano zero-valent iron: Debromination kinetics and pathway[J]. Environmental Science, 2014, 35(3): 964-971 (in Chinese).

    [61] ZHOU H Y, HAN J, BAIG S A, et al. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles[J]. Journal of Hazardous Materials, 2011, 198: 7-12.
    [62] TSO C P, SHIH Y H. The influence of carboxymethylcellulose (CMC) on the reactivity of Fe NPs toward decabrominated diphenyl ether: The Ni doping, temperature, pH, and anion effects[J]. Journal of Hazardous Materials, 2017, 322: 145-151.
    [63] HE D, MA X M, JONES A M, et al. Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles[J]. Environmental Science: Nano, 2016, 3(4): 737-744.
    [64] ZOU X L, ZHOU T, MAO J, et al. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system[J]. Chemical Engineering Journal, 2014, 257: 36-44.
    [65] LUO S, YANG S G, SUN C, et al. Feasibility of a two-stage reduction/subsequent oxidation for treating Tetrabromobisphenol A in aqueous solutions[J]. Water Research, 2011, 45(4): 1519-1528.
    [66] DAI Y R, SONG Y H, WANG S Y, et al. Treatment of halogenated phenolic compounds by sequential tri-metal reduction and laccase-catalytic oxidation[J]. Water Research, 2015, 71: 64-73.
    [67] CAO H J, HE M X, HAN D D, et al. OH-initiated oxidation mechanisms and kinetics of 2,4,4'-tribrominated diphenyl ether[J]. Environmental Science & Technology, 2013, 47: 8238-8247.
    [68] 周红艺,曾思思,梁思,等. 还原脱氯-生物联合降解2,4-二氯苯氧乙酸[J]. 环境科学, 2014, 35(9): 3430-3435.

    ZHOU H Y, ZENG S S, LIANG S, et al. Degradation of 2,4-D by combined catalytic dechlorination and biological oxidation[J]. Environmental Science, 2014, 35(9): 3430-3435 (in Chinese).

    [69] FRANTISEK F, MALETEROVA Y, KASTANEK P. Combination of advanced oxidation and/or reductive dehalogenation and biodegradation for the decontamination of waters contaminated with chlorinated organic compounds[J]. Separation Science and Technology, 2007, 42(7): 1613-1625.
    [70] 高园园. 纳米零价铁强化植物修复电子垃圾污染土壤的效果和机理[D]. 天津: 南开大学, 2014. GAO Y Y, ZHOU Q X. Efficiency and mechanisms of nZVI-strengthening phytoremediation for e-waste contaminated soils[D]. Tianjin: Nankai University, 2014 (in Chinese).
    [71] 杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347.

    DU Y, WANG X Y. Green synthesis and modification of nano zero-valent iron[J]. Environmental Chemistry, 2016, 35(2): 337-347 (in Chinese).

  • 加载中
计量
  • 文章访问数:  1752
  • HTML全文浏览数:  1674
  • PDF下载数:  436
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-11-08
  • 刊出日期:  2017-07-15
韩文亮, 陈海明, 陈兴童. 改性零价铁降解多溴二苯醚的研究进展[J]. 环境化学, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
引用本文: 韩文亮, 陈海明, 陈兴童. 改性零价铁降解多溴二苯醚的研究进展[J]. 环境化学, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
HAN Wenliang, CHEN Haiming, CHEN Xingtong. Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron[J]. Environmental Chemistry, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
Citation: HAN Wenliang, CHEN Haiming, CHEN Xingtong. Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron[J]. Environmental Chemistry, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801

改性零价铁降解多溴二苯醚的研究进展

  • 1. 华侨大学化工学院环境科学与工程系, 厦门, 361021
基金项目:

国家自然科学基金(41203077),福建省自然科学基金(2011J05112),泉州市科技计划(2012Z85)和华侨大学引进人才启动项目(11BS216)资助.

摘要: 多溴二苯醚(PBDEs)是一类持久性有机污染物(POPs),其无害降解技术是一个研究热点.PBDEs的降解方法包括生物降解、光降解、电解降解、零价铁(ZVI)还原降解、Fenton试剂氧化降解等.其中,零价铁因其优良的还原性能,被逐渐应用于PBDEs等POPs的还原降解,但零价铁因比表面积小、易团聚、易氧化等缺点,需通过改性以改善其降解效果.本文重点从减小铁颗粒粒径、应用搭载系统、加入活性金属、添加表面活性剂、使用辅助手段(超声或微波等)等5个方面综述了改性零价铁降解PBDEs的研究进展,讨论了各改性方法的优缺点,介绍了卤代有机污染物脱卤产物的后续降解方法,并展望了今后的研究重点.

English Abstract

参考文献 (71)

返回顶部

目录

/

返回文章
返回