改性零价铁降解多溴二苯醚的研究进展
Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron
-
摘要: 多溴二苯醚(PBDEs)是一类持久性有机污染物(POPs),其无害降解技术是一个研究热点.PBDEs的降解方法包括生物降解、光降解、电解降解、零价铁(ZVI)还原降解、Fenton试剂氧化降解等.其中,零价铁因其优良的还原性能,被逐渐应用于PBDEs等POPs的还原降解,但零价铁因比表面积小、易团聚、易氧化等缺点,需通过改性以改善其降解效果.本文重点从减小铁颗粒粒径、应用搭载系统、加入活性金属、添加表面活性剂、使用辅助手段(超声或微波等)等5个方面综述了改性零价铁降解PBDEs的研究进展,讨论了各改性方法的优缺点,介绍了卤代有机污染物脱卤产物的后续降解方法,并展望了今后的研究重点.Abstract: Green degradation of polybrominated diphenyl ethers (PBDEs), a class of persistent organic pollutants (POPs), is a research hot spot. The degradation methods of PBDEs include biodegradation, photolysis degradation, electrolysis degradation, zero valent iron (ZVI) reductive degradation and Fenton reagent oxidative degradation etc. Because of its excellent reductive capability, ZVI has been gradually applied to the reductive dehalogenation of PBDEs and other POPs. However, since there are so many weakness for the conventional ZVI, such as the limited specific surface area, easy aggregation and oxidation, modification of ZVI is needed to improve its degradation efficiency. Five modification approaches for ZVI were reviewed on the research progress of PBDEs degradation, such as reducing iron particle size, using carriers, supplementing with active metals, adding surfactants, and employing auxiliary means (ultrasound or microwave) etc. Advantages and disadvantages for each modification method were discussed. Moreover, the subsequent degradation methods of the dehalogenated products were also introduced, and perspective on the future research focus of modified ZVI were also discussed.
-
Key words:
- zero valent iron /
- modification /
- polybrominated diphenyl ethers /
- degradation
-
-
[1] ABBASI G, BUSER A M, SOEHL A, et al. Stocks and flows of PBDEs in products from use to waste in the U.S. and Canada from 1970 to 2020[J]. Environmental Science & Technology, 2015, 49(3): 1521-1528. [2] CHOI J, JANG Y C, KIM J G. Substance flow analysis and environmental releases of PBDEs in life cycle of automobiles[J]. Science of the Total Environment, 2017, 574: 1085-1094. [3] EZZATAHMADI N, AYOKO G A, MILLAR G J, et al. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review[J]. Chemical Engineering Journal, 2017, 312: 336-350. [4] HAN W L, FAN T, XU B H, et al. Passive sampling of polybrominated diphenyl ethers in indoor and outdoor air in Shanghai, China: Seasonal variations, sources, and inhalation exposure[J]. Environmental Science and Pollution Research, 2016, 23(6): 5771-5781. [5] 韩文亮,刘豫,陈海明,等. 厦门室内多溴二苯醚的沉降通量、季节变化与人体暴露水平[J]. 环境科学, 2016, 37(3): 834-846. HAN W L, LIU Y, CHEN H M, et al. Indoor deposition flux, seasonal variations and human exposure levels of polybrominated diphenyl ethers in Xiamen, China[J]. Environmental Science, 2016, 37(3): 834-846 (in Chinese).
[6] 韩文亮,陈海明,陈兴童. 厦门室内降尘的沉降通量与季节变化[J]. 环境化学, 2016, 35(3): 491-499. HAN W L, CHEN H M, CHEN X T. Deposition flux and seasonal variations of indoor dustfall in Xiamen,China[J]. Environmental Chemistry, 2016, 35(3): 491-499 (in Chinese).
[7] 鲍彦,尹帅星,张磊,等. 中国居民多溴联苯醚的膳食暴露水平和风险评估[J]. 环境化学, 2016, 35(6): 1172-1179. BAO Y, YIN S X, ZHANG L, et al. Dietary intake and risk assessment for polybrominated diphenyl ethers in China[J]. Environmental Chemistry, 2016, 35(6): 1172-1179 (in Chinese).
[8] AKORTIA E, OKONKWO J O, LUPANKWA M, et al. A review of sources, levels, and toxicity of polybrominated diphenyl ethers (PBDEs) and their transformation and transport in various environmental compartments[J]. Environmental Reviews, 2016, 24(3): 253-273. [9] LYCHE J L, ROSSELAND C, BERGE G, et al. Human health risk associated with brominated flame-retardants (BFRs)[J]. Environment International, 2015, 74: 170-180. [10] COSTA L G, de LAAT R, TAGLIAFERRI S, et al. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity[J]. Toxicology Letters, 2014, 230(2): 282-294. [11] SU G Y, LETCHER R J, CRUMP D, et al. Sunlight irradiation of highly brominated polyphenyl ethers generates polybenzofuran products that alter dioxin-responsive mRNA expression in chicken hepatocytes[J]. Environmental Science & Technology, 2016, 50(5): 2318-2327. [12] 孙文文,周林,韩文亮,等. 电子垃圾拆解对台州氯代/溴代二英浓度和组成的影响[J]. 生态毒理学报, 2016, 11(2): 330-338. SUN W W, ZHOU L, HAN W L, et al. Impact of e-waste dismantling activities on the levels and compositions of PCDD/Fs and PBDD/Fs in the atmosphere of Taizhou[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 330-338 (in Chinese).
[13] TAN L, LU S Y, FANG Z Q, et al. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 200: 200-210. [14] PANG Z H, YAN M Y, JIA X S, et al. Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: Preparation, characterization and influence factors[J]. Journal of Environmental Sciences, 2014, 26(2): 483-491. [15] CHOW K L, MAN Y B, TAM N F Y, et al. Removal of decabromodiphenyl ether (BDE-209) using a combined system involving TiO2 photocatalysis and wetland plants[J]. Journal of Hazardous Materials, 2017, 322: 263-269. [16] CHEN J, WANG C, SHEN Z J, et al. Insight into the long-term effect of mangrove species on removal of polybrominated diphenyl ethers (PBDEs) from BDE-47 contaminated sediments[J]. Science of the Total Environment, 2017, 575: 390-399. [17] DENG D Y, LIU J, XU M Y, et al. Uptake, translocation and metabolism of decabromodiphenyl ether (BDE-209) in seven aquatic plants[J]. Chemosphere, 2016, 152: 360-368. [18] WAAIJERS S L, PARSONS J R. Biodegradation of brominated and organophosphorus flame retardants[J]. Current Opinion in Biotechnology, 2016, 38: 14-23. [19] WANG L Q, LI Y, ZHANG W L, et al. Isolation and characterization of two novel psychrotrophic decabromodiphenyl ether-degrading bacteria from river sediments[J]. Environmental Science and Pollution Research, 2016, 23(11): 10371-10381. [20] TANG S Y, YIN H, CHEN S N, et al. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process[J]. Journal of Hazardous Materials, 2016, 308: 335-342. [21] WEI H, ZOU Y H, LI A, et al. Photolytic debromination pathway of polybrominated diphenyl ethers in hexane by sunlight[J]. Environmental Pollution, 2013, 174: 194-200. [22] SUN C Y, CHANG W, MA W H, et al. Photoreductive debromination of decabromodiphenyl ethers in the presence of carboxylates under visible light irradiation[J]. Environmental Science & Technology, 2013, 47(5): 2370-2377. [23] LEI M, WANG N, ZHU L H, et al. A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide-TiO2 photocatalyst[J]. Chemical Engineering Journal, 2014, 241: 207-215. [24] LIU Y M, CHEN S, QUAN X, et al. Nitrogen-doped nanodiamond rod array electrode with superior performance for electroreductive debromination of polybrominated diphenyl ethers[J]. Applied Catalysis B: Environmental, 2014, 154-155: 206-212. [25] 赵世岩. 碳纳米管修饰电极对PCBs和PBDEs的电催化还原脱卤[D]. 大连: 大连理工大学, 2009. ZHAO S Y. Electrocatalytic reductive dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers by modified carbon nanotubes electrode[D]. Dalian: Dalian University of Technology, 2009 (in Chinese). [26] 孙云娜. 铁炭微电解耦合Fenton试剂降解十溴联苯醚(BDE-209)的实验研究[D].兰州: 兰州交通大学, 2012. SUN Y N. Study on deca-brominated diphenyl ethers (BDE209) by iron-carbon micro-electrolysis immobilized fenton processes[D]. Lanzhou: Lanzhou Jiaotong University, 2012 (in Chinese). [27] LUO S, YANG S G, XUE Y G, et al. Two-stage reduction/subsequent oxidation treatment of 2,2',4,4'-tetrabromodiphenyl ether in aqueous solutions: Kinetic, pathway and toxicity[J]. Journal of Hazardous Materials, 2011, 192(3): 1795-1803. [28] FANG Z Q, QIU X H, CHEN J H, et al. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor[J]. Desalination, 2011, 267(1): 34-41. [29] YU K, GU C, BOYD S A, et al. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron[J]. Environmental Science & Technology, 2012, 46(16): 8969-8975. [30] LUO S, YANG S G, SUN C, et al. Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy[J]. Science of the Total Environment, 2012, 429: 300-308. [31] QIU X H, FANG Z Q, LIANG B, et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres[J]. Journal of Hazardous Materials, 2011, 193: 70-81. [32] LIU Z T, GU C G, YE M, et al. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism[J]. Journal of Hazardous Materials, 2015, 298: 328-337. [33] XIE Y Y, CHENG W, TSANG P E, et al. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres[J]. Journal of Environmental Management, 2016, 166: 478-483. [34] ORTH W S, GILLHAM R W. Dechlorination of trichloroethene in aqueous solution using Fe0[J]. Environmental Science & Technology, 1996, 30(1): 66-71. [35] FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. [36] MATHESON L J, TRATNYEK P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12): 2045-2053. [37] 杨凤林,全燮,薛大明,等. 水中氯代有机化合物处理方法及研究进展[J]. 环境科学进展, 1996, 4(6): 36-44. YANG F L, QUAN X, XUE D M, et al. Advance of disposal of chlorinated organic compounds in water[J]. Advances in Environmental Science, 1996, 4(6): 36-44 (in Chinese).
[38] 全燮,刘会娟,杨凤林,等. 二元金属体系对水中多氯有机物的催化还原脱氯特性[J]. 中国环境科学, 1998, 18(4): 333-336. QUAN X, LIU H J, YANG F L, et al. Dechlorination of three polychlorinated hydrocarbons in water using bimetallic systems[J]. China Environmental Science, 1998, 18(4): 333-336 (in Chinese).
[39] 明磊强,何义亮,章敏,等. 零价铁降解多溴联苯醚影响条件的研究[J]. 净水技术, 2010, 29(2): 49-52. MING L Q, HE Y L, ZHANG M, et al. Studies on effect conditions for removal of polybrominated diphenyl ethers by zero-valent iron[J]. Water Purification Technology, 2010, 29(2): 49-52 (in Chinese).
[40] KEUM Y S, LI Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science & Technology, 2005, 39(7): 2280-2286. [41] SHIH Y H, TAI Y T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles[J]. Chemosphere, 2010, 78(10): 1200-1206. [42] ZAHRAN E M, BHATTACHARYYA D, BACHAS L G. Reactivity of Pd/Fe bimetallic nanotubes in dechlorination of coplanar polychlorinated biphenyls[J]. Chemosphere, 2013, 91(2): 165-171. [43] FANG Z Q, QIU X H, CHEN J H, et al. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: Influencing factors, kinetics, and mechanism[J]. Journal of Hazardous Materials, 2011, 185(2-3): 958-969. [44] LUO S, YANG S G, WANG X D, et al. Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation[J]. Chemosphere, 2010, 79(6): 672-678. [45] LIANG D W, YANG Y H, XU W W, et al. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: Mechanism and kinetics[J]. Journal of Hazardous Materials, 2014, 278: 592-596. [46] 刘静,刘爱荣,张伟贤. 纳米零价铁及其在环境介质中氧化后性质演变研究进展[J]. 环境化学, 2014, 33(4): 576-583. LIU J, LIU A R, ZHANG W X. Review on transformation of oxidized nanoscale zero valent iron in environment media[J]. Environmental Chemistry, 2014, 33(4): 576-583 (in Chinese).
[47] 琚丽婷. 蒙脱石负载零价纳米铁镍或纳米铁银双金属处理三氯生的研究[D]. 广州: 华南理工大学, 2013. JU L T. Montmorillonite-supported zero-valent Fe/Ni or Fe/Ag bimetallic particles and their application for the removal of triclosan[D]. Guangzhou: South China University of Technology, 2013 (in Chinese). [48] TU J J, YANG Z D, HU C, et al. Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation[J]. Journal of Environmental Sciences, 2014, 26(5): 1154-1161. [49] WEI J J, QIAN Y J, LIU W J, et al. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe[J]. Journal of Environmental Sciences, 2014, 26(5): 1162-1170. [50] SANTOS M S F, ALVES A, MADEIRA L M. Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems: A review[J]. Water Research, 2016, 88: 39-59. [51] MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(5): 443-466. [52] TOMIZAWA M, KUROSU S, KOBAYASHI M, et al. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals[J]. Journal of Environmental Management, 2016, 183: 478-487. [53] 李亚浦. 多溴联苯醚的降解及其机理研究[D]. 上海: 华东理工大学, 2010. LI Y P. Study on degradation techniques of PBDEs and its possible mechanism[D]. Shanghai: East China University of Science and Technology, 2010 (in Chinese). [54] 罗斯. 还原-氧化两步处理法降解水中典型溴代阻燃剂的研究[D]. 南京: 南京大学, 2011. LUO S. Two-stage reduction/subsequent oxidation treatment of brominated flame retardants in aqueous solutions[D]. Nanjing: Nanjing University, 2011 (in Chinese). [55] XIE Y Y, FANG Z Q, QIU X H, et al. Comparisons of the reactivity, reusability and stability of four different zero-valent iron-based nanoparticles[J]. Chemosphere, 2014, 108: 433-436. [56] ZHUANG Y, AHN S, SEYFFERTH A L, et al. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron[J]. Environmental Science & Technology, 2011, 45(11): 4896-4903. [57] SCHRICK B, BLOUGH J L, JONES A D, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chemistry of Materials, 2002, 14(12): 5140-5147. [58] ZHUANG Y, AHN S, LUTHY R G. Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: Pathways, kinetics, and reactivity[J]. Environmental Science & Technology, 2010, 44(21): 8236-8242. [59] ZHU B W, LIM T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration[J]. Environmental Science & Technology, 2007, 41(21): 7523-7529. [60] 杨雨寒,徐伟伟,彭思侃,等. 纳米零价铁降解水中多溴联苯醚(PBDEs)及降解途径研究[J]. 环境科学, 2014, 35(3): 964-971. YANG Y H, XU W W, PENG S K, et al. Reductive debromination of polybrominated diphenyl ethers in aquifier by nano zero-valent iron: Debromination kinetics and pathway[J]. Environmental Science, 2014, 35(3): 964-971 (in Chinese).
[61] ZHOU H Y, HAN J, BAIG S A, et al. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles[J]. Journal of Hazardous Materials, 2011, 198: 7-12. [62] TSO C P, SHIH Y H. The influence of carboxymethylcellulose (CMC) on the reactivity of Fe NPs toward decabrominated diphenyl ether: The Ni doping, temperature, pH, and anion effects[J]. Journal of Hazardous Materials, 2017, 322: 145-151. [63] HE D, MA X M, JONES A M, et al. Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles[J]. Environmental Science: Nano, 2016, 3(4): 737-744. [64] ZOU X L, ZHOU T, MAO J, et al. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system[J]. Chemical Engineering Journal, 2014, 257: 36-44. [65] LUO S, YANG S G, SUN C, et al. Feasibility of a two-stage reduction/subsequent oxidation for treating Tetrabromobisphenol A in aqueous solutions[J]. Water Research, 2011, 45(4): 1519-1528. [66] DAI Y R, SONG Y H, WANG S Y, et al. Treatment of halogenated phenolic compounds by sequential tri-metal reduction and laccase-catalytic oxidation[J]. Water Research, 2015, 71: 64-73. [67] CAO H J, HE M X, HAN D D, et al. OH-initiated oxidation mechanisms and kinetics of 2,4,4'-tribrominated diphenyl ether[J]. Environmental Science & Technology, 2013, 47: 8238-8247. [68] 周红艺,曾思思,梁思,等. 还原脱氯-生物联合降解2,4-二氯苯氧乙酸[J]. 环境科学, 2014, 35(9): 3430-3435. ZHOU H Y, ZENG S S, LIANG S, et al. Degradation of 2,4-D by combined catalytic dechlorination and biological oxidation[J]. Environmental Science, 2014, 35(9): 3430-3435 (in Chinese).
[69] FRANTISEK F, MALETEROVA Y, KASTANEK P. Combination of advanced oxidation and/or reductive dehalogenation and biodegradation for the decontamination of waters contaminated with chlorinated organic compounds[J]. Separation Science and Technology, 2007, 42(7): 1613-1625. [70] 高园园. 纳米零价铁强化植物修复电子垃圾污染土壤的效果和机理[D]. 天津: 南开大学, 2014. GAO Y Y, ZHOU Q X. Efficiency and mechanisms of nZVI-strengthening phytoremediation for e-waste contaminated soils[D]. Tianjin: Nankai University, 2014 (in Chinese). [71] 杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347. DU Y, WANG X Y. Green synthesis and modification of nano zero-valent iron[J]. Environmental Chemistry, 2016, 35(2): 337-347 (in Chinese).
-

计量
- 文章访问数: 1752
- HTML全文浏览数: 1674
- PDF下载数: 436
- 施引文献: 0