广州地区一次典型光化学污染过程的监测

邹宇, 王凤, 邓雪娇, 李菲, 殷长秦. 广州地区一次典型光化学污染过程的监测[J]. 环境化学, 2018, 37(2): 353-362. doi: 10.7524/j.issn.0254-6108.2017071601
引用本文: 邹宇, 王凤, 邓雪娇, 李菲, 殷长秦. 广州地区一次典型光化学污染过程的监测[J]. 环境化学, 2018, 37(2): 353-362. doi: 10.7524/j.issn.0254-6108.2017071601
ZOU Yu, WANG Feng, DENG Xuejiao, LI Fei, YIN Changqin. Monitoring of a typical photochemical pollution process in Guangzhou Region[J]. Environmental Chemistry, 2018, 37(2): 353-362. doi: 10.7524/j.issn.0254-6108.2017071601
Citation: ZOU Yu, WANG Feng, DENG Xuejiao, LI Fei, YIN Changqin. Monitoring of a typical photochemical pollution process in Guangzhou Region[J]. Environmental Chemistry, 2018, 37(2): 353-362. doi: 10.7524/j.issn.0254-6108.2017071601

广州地区一次典型光化学污染过程的监测

  • 基金项目:

    国家自然科学基金(41475105,41405133,41605105),广东省自然科学基金(2014A030313788),国家重点研发计划(2016YFC0202003)和广东省气象局科学技术研究项目(2014Q02)资助.

Monitoring of a typical photochemical pollution process in Guangzhou Region

  • Fund Project: Supported by the National Science Foundation of China (41475105,41405133,41605105), Natural Science Foundation of Guangdong Province (2014A030313788), National Key Research of MOST (2016YFC0202003) and Science and Technology Research Project of Guangdong Meteorological Bureau(2014Q02).
  • 摘要: 为研究广州地区典型光化学污染过程形成的高浓度臭氧事件的变化特征及成因,2011年5月17—20日利用广州番禺大气成分站(GPACS)对污染气体(O3、VOCs、NO2、NO)、颗粒物(PM1、PM2.5、PM10)、能见度以及气象要素进行了监测.结果表明,光化学污染过程期间,臭氧总体浓度比较高,最大臭氧1 h浓度分别为103.8×10-9、169.9×10-9、146.1×10-9以及115.5×10-9,远超国家二级标准93×10-9(200 μg·m-3).但颗粒物浓度保持较低水平,颗粒物日均值远低于国家二级标准(PM10为150 μg·m-3,PM2.5为75 μg·m-3),能见度整体较高.芳香烃和烯烃是臭氧生成潜势最大的两个成分,其中异戊二烯、间二甲苯、对二甲苯、甲苯等物种对臭氧生成贡献大.均压场-冷锋前天气形势带来的不利于污染物扩散的气象条件、强烈的辐射以及高浓度VOCs共同导致了这次高浓度臭氧污染事件的发生.
  • 加载中
  • [1] CHAN C K,YAO X H. Air pollution in mega cities in China[J].Atmospheric Environment,2008,42(1):1-42.
    [2] WANG T J,JIANG F,DENG J J,et al. Urban air quality and regional haze weather forecast for Yangtze River Delta region[J]. Atmospheric Environment,2012,58:70-83.
    [3] ZHAO P H,ZHANG X L,XU X F,et al. Long-term visibility trends and characteristics in the region of Bejing,Tianjin,and Hebei,China[J]. Atmospheric Research,2011,101(3):711-718.
    [4] ZOU Y,DENG X J,ZHU D,et al. Characteristics of 1 year of observational data of VOCs,NOx and O3 at a suburban site in Guangzhou,China[J]. Atmospheric Chemistry Physics,2015,15(12):6625-6636.
    [5] WANG T,WEI X L,DING A J,et al. Increasing surface ozone concentrations in the background atmosphere of Southern China,1994-2007[J]. Atmospheric Chemistry Physics,2009,9:6217-6227.
    [6] ZHENG J Y,ZHONG L J,WANG T,et al. Ground-level ozone in the Pearl River Delta region:Analysis of data from a recently established regional air quality monitoring network[J]. Atmospheric Environment,2010,44:814-823.
    [7] 马志强,王跃思,孙扬,等. 北京市与乡河县大气臭氧及氮氧化合物的变化特征[J]. 环境化学,2007,26(6):832-837.

    MA Z Q,WANG Y S,SUN Y,et al. Characteristic of ozone and oxides of nitrogen in Beijing and Xianghe[J]. Environmental Chemistry,2007,26(6):832-837(in Chinese).

    [8] GENG F H,TIE X X,XU J M,et al. Characterizations of ozone,NOx,and VOCs measured in Shanghai,China[J]. Atmospheric Environment,2008,42:6873-6883.
    [9] TIE X,MADRONICH S,LI G H,et al. Characterizations of chemical oxidants in Mexico City:A regional chemical/dynamical model (WRF-Chem) study[J]. Atmospheric Environment,2007,41:1989-2008.
    [10] 邹宇,邓雪娇,王伯光,等.广州番禺大气成分站挥发性有机物的污染特征[J].中国环境科学,2013,33(5):808-813.

    ZOU Y,DENG X J,WANG B G,et al. Pollution characteristics of volatile organic compounds in Panyu composition station[J]. China Environmental Science,2013,33(5):808-813(in Chinese).

    [11] 邓雪娇,王新明,赵春生,等.珠江三角洲典型过程VOCs的平均浓度与化学反应活性[J].中国环境科学,2010,30(9):1153-1161.

    DENG X J,WANG X M,ZHAO C S,et al. The mean concentration and chemical reactivity of VOCs of typical processes over Pearl River Delta[J]. China Environmental Science,2010,30(9):1153-1161(in Chinese).

    [12] CHENG H R,GUO H,SAUNDERS S M,et al. Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model[J]. Atmospheric Environment,2010,44:4199-4028.
    [13] 邹宇,邓雪娇,李菲,等. 广州大气中异戊二烯浓度变化特征、化学活性和来源分析[J].环境科学学报,2015,35(3):647-655.

    ZOU Y,DENG X J,LI F,et al. Variation characteristics,chemical reactivity and sources of isoprene in the atmosphere of Guangzhou[J]. Acta Scientiae Circumstantiae,2015,35(3):647-655(in Chinese).

    [14] ZHENG J Y,SHAO M,CHE W W,et al. Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta,China[J]. Environment Science Technology,2009,43:8580-8586.
    [15] 阎雨龙,温彦平,冯新宇,等. 太原市城区臭氧变化特征及影响因素[J].环境化学,2016,35(11):2261-2268.

    YAN Y L,WEN Y P,FENG X Y,et al. Variation and the influence factors of ozone in urban area in Taiyuan[J]. Environmental Chemistry,2016,35(11):2261-2268(in Chinese).

    [16] 姚青,孙玫玲,蔡子颖,等. 2009年天津城区地面O3和NOx的季节变化与相关分析[J]. 环境化学,2011,30(9):1650-1656.

    YAO Q,SUN M L,CAI Z Y,et al. Seasonal variation and analysis of the relationship between NO,NO2 and O3 concentrations in Tianjin in 2009[J]. Environmental Chemistry,2011,30(9):1650-1656(in Chinese).

    [17] 沈利娟,李莉,吕升,等. 2013年夏季嘉兴市一次光化学事件的观测分析[J]. 环境科学,2014,35(5):1662-1670.

    SHEN L J,LI L,LV S,et al. Observation of a photochemical event in Jiaxing during summer 2013[J]. Environmental Science,2014,35(5):1662-1670(in Chinese).

    [18] RAN L,ZHAO C S,XU W Y,et al. VOC reactivity and its effect on ozone production during the HaChi summer campaign[J]. Atmospheric Chemistry Physics,2011,11:4657-4667.
    [19] WU D,MAO J T,DENG X J,et al. Black carbon aerosols and their radiative properties in the Pearl River Delta region[J]. Science in China Series D:Earth Sciences,2009,52(8):1152-1163.
    [20] 邹宇,邓雪娇,李菲,等. 广州番禺大气成分站复合污染过程VOCs对O3与SOA的生成潜势[J].环境科学,2017,38(6):2246-2255.

    ZOU Y,DENG X J,LI F,et al. Effect of VOCs on O3 and SOA formation potential during the combined pollution process in Guangzhou Panyu Atmospheric Composition Station. Environmental Science,2017,38(6):2246-2255(in Chinese).

    [21] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste,1994,44(7):881-899.
    [22] ATKINSON R,AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews,2003,103(12):4605-4638.
    [23] LEE S C,CHIU M Y,HO K F,et al. Volatile organic compounds(VOCs) in urban atmosphere of Hong Kong[J]. Chemosphere,2002,48:375-382.
    [24] MURENA F. Air quality nearby road traffic tunnel portals:BTEX monitoring[J]. Journal of Environment Sciences,2007,19:578-583.
    [25] DUAN J C,TAN J H,YANG L,et al. Concentration,sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing[J]. Atmospheric Research,2008,88:25-35.
    [26] CAI C J,GENG F H,TIE X X,et al. Characteristics and source apportionment of VOCs measured in Shanghai,China[J]. Atmospheric Environment,2010,44:5005-5014.
  • 加载中
计量
  • 文章访问数:  1146
  • HTML全文浏览数:  1050
  • PDF下载数:  371
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-16
  • 刊出日期:  2018-02-15

广州地区一次典型光化学污染过程的监测

  • 1.  中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室, 广州, 510641;
  • 2.  广东省气象台, 广州, 510641
基金项目:

国家自然科学基金(41475105,41405133,41605105),广东省自然科学基金(2014A030313788),国家重点研发计划(2016YFC0202003)和广东省气象局科学技术研究项目(2014Q02)资助.

摘要: 为研究广州地区典型光化学污染过程形成的高浓度臭氧事件的变化特征及成因,2011年5月17—20日利用广州番禺大气成分站(GPACS)对污染气体(O3、VOCs、NO2、NO)、颗粒物(PM1、PM2.5、PM10)、能见度以及气象要素进行了监测.结果表明,光化学污染过程期间,臭氧总体浓度比较高,最大臭氧1 h浓度分别为103.8×10-9、169.9×10-9、146.1×10-9以及115.5×10-9,远超国家二级标准93×10-9(200 μg·m-3).但颗粒物浓度保持较低水平,颗粒物日均值远低于国家二级标准(PM10为150 μg·m-3,PM2.5为75 μg·m-3),能见度整体较高.芳香烃和烯烃是臭氧生成潜势最大的两个成分,其中异戊二烯、间二甲苯、对二甲苯、甲苯等物种对臭氧生成贡献大.均压场-冷锋前天气形势带来的不利于污染物扩散的气象条件、强烈的辐射以及高浓度VOCs共同导致了这次高浓度臭氧污染事件的发生.

English Abstract

参考文献 (26)

目录

/

返回文章
返回