不同条件下河口裸滩地汞、甲基汞含量变化
Distribution patterns of total and methyl mercury in sediments along a gradient of salinity, temperature and submerged conditions in Liaohe estuary
-
摘要: 选择辽河口裸滩表、底层(0—10 cm和10—20 cm)沉积物作为研究对象,利用恒温培养法进行模拟培养,探讨在不同盐度(CK、0.50%、1.50%和1.80%)、不同温度(10℃、20℃和30℃)以及不同淹水状态(全淹水和半淹水)下河口裸滩表层和底层(0—10 cm和10—20 cm)沉积物中汞和甲基汞含量的变化趋势.研究发现,随着淹水盐度升高,沉积物中总汞含量逐渐降低;在10℃时,沉积物中甲基汞含量均低于纯化后沉积物,但随淹水盐度升高逐渐升高;温度为20℃和30℃时,甲基汞含量在淹水盐度为1.50%时最高.相同盐度条件下,沉积物中总汞含量随环境温度(10—30℃)升高而逐渐降低,甲基汞含量则逐渐增加;沉积物淹水状态为全淹水时比半淹水状态更有利于沉积物中无机汞的释放和甲基汞的形成.淹水盐度和环境温度的改变,更容易引起表层(0—10 cm)沉积物中汞的释放和甲基汞的产生.Abstract: Response of total (THg) and methyl mercury (MeHg) in sediments from estuary mudflats responding to changing environmental factors like salinity, temperature and flooding conditions was investigated using laboratory incubation experiments. Surface sediments of mudflats, 0-10 cm and 10-20 cm, were collected from the Liaohe estuary. The orthogonal incubation experiments included four treatments for salinity (Control、0.5%、1.5% and 1.8%), three temperature gradients (10℃、20℃and 30℃) and two flooding conditions (submerged and no-submerged). Results indicated that THg of both sediment layers gradually decreased with salinity. Under a consistent salinity, THg decreased with incubation temperatures within 10-30℃ and MeHg changed in the opposite trend. Incubated at 10℃, MeHg was lower than the tested sediments, but increased with salinity. Incubated at 20℃and 30℃, the highest MeHg was founded when the salinity was 1.5%. More inorganic mercury release and higher MeHg were observed at submerged conditions than those at no-submerged conditions, and this phenomenon was more apparent in the sediments from 0-10 cm layers when salinity and incubation temperature changed.
-
Key words:
- mudflats Liaohe estuay /
- total mercury /
- methylmercury /
- submerged salinity /
- temperature /
- sediments of estuary
-
-
[1] 王起超, 刘汝海, 吕宪国, 等. 湿地汞环境过程研究进展[J]. 地球科学进展, 2002, 17(6):881-885. WANG Q C, LIU R H, LU X G, et al. Progress of study on the mercury process in the wetland environment[J]. Advance in Earth Sciences, 2002, 17(6):881-885(in Chinese).
[2] 丁振华, 刘金铃, 李柳强, 等. 中国主要红树林湿地沉积物中汞的分布特征[J]. 环境科学, 2009, 30(8):2210-2215. DING Z H, LIU J L, LI L Q, et al. Distribution of mercury in surficial sediments from main mangrove wetlans of China[J]. Environmental Science, 2009, 30(8):2210-2215(in Chinese).
[3] 高志强, 张毅强, 李杰, 等. 珠江入海口海产品中总汞与甲基汞含量特征及食用风险[J]. 生态环境学报, 2015, 24(9):1499-1504. GAO Z Q, ZHANG Y Q, LI J, et al. Concentration characteristics and edible risk of total mercury and methylmercury in marine products from the Pearl River Estuary[J]. Ecology and Environmental Sciences, 2015, 24(9):1499-1504(in Chinese).
[4] SMITH S R.A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge[J].Environment International,2009,35(1):142-156. [5] 王沛芳, 王文娜, 王蓉, 等. 汞对水生生物的毒性效应研究进展[J]. 安全与环境学报, 2014, 14(2):282-288. WANG P F, WANG W N, WANG R, et al. Research progress of the toxic effect of mercury on aquatic organisms[J]. Journal of Safety and Environment, 2014, 14(2):282-288(in Chinese).
[6] 江津津, 曾庆孝, 阮征, 等. 水产品中汞与甲基汞风险评估的研究进展[J]. 食品工业科技, 2007, 28(11):244-246. JIANG J J, ZENG Q X, RUAN Z, et al. Research progress of the risk assessment of mercury and methyl mercury in aquatic products[J]. Since and Technology of Food Industry, 2007, 28(11):244-246(in Chinese).
[7] 丁振华, 刘金铃, 李柳强, 等. 中国红树林湿地沉积物中汞的形态特征、生物可利用性和迁移性[J]. 海洋环境科学, 2010, 29(5):653-656. DING Z H, LIU J L, LI L Q, et al. Speciation,bioaccumulation and transportation of mercury in sediments of mangrove wetlands of China[J]. Marine Environmental Science, 2010, 29(5):653-656(in Chinese).
[8] [9] 刘汝海, 刘诗璇, 王杰, 等. 秋夏季黄河三角洲湿地土壤汞和甲基汞的变化[J]. 环境科学学报, 2017, 37(1):272-279. LIU R H, LIU S X, WANG J, et al. Change of mercury and methylmercury in Yellow River Delta wetlands from autumn to summer[J]. Acta Scientiae Circumstantiae, 2017, 37(1):272-279(in Chinese).
[10] 陈效, 徐盈, 张甲耀, 等. 硫酸盐还原菌对汞的甲基化作用及其影响因子[J]. 水生生物学报, 2005, 29(1):50-54. CHENX, XU Y, ZHANG J Y, et al. Microbial methylation of mercury and their affecting factors in aquatic environment[J]. Acta Hydrobiologica Sinica, 2005, 29(1):50-54(in Chinese).
[11] 张颖, 郑西来, 伍成成, 等. 辽河口湿地芦苇叶片蒸腾及其与影响因子关系研究[J]. 湿地科学, 2011, 9(3):227-232. ZHANG Y, ZHENG X L, WU C C, et al. Simulation experiment about transpiration characteristics of phragmites australis leaf in Liaohe Estuary Wetlands[J]. Wetland Science, 2011, 9(3):227-232(in Chinese).
[12] 肖颖, 杨继松. 辽河口滨海湿地土壤有机碳矿化及其与盐分的关系[J]. 生态学杂志, 2015, 34(10):2792-2798. XIAO Y, YANG J S. Soil organic carbon mineralization and its relation with salinity in coastal wetland of Liao-he estuary[J]. Chinese Journal of Ecology, 2015, 34(10):2792-2798(in Chinese).
[13] 郑冬梅, 李昕馨, 罗庆. 锌冶炼不同群落生境蟋蟀汞污染[J]. 环境科学, 2012, 33(10):3680-3684. ZHENG D M, LI X X, LUO Q. Mercury pollution in cricket in different biotopes suffering from pollution by zinc smelting[J]. Environmental Science, 2012, 33(10):3680-3684(in Chinese).
[14] ZHENG D M, ZHANG Z S, WANG Q C, et al. Total mercury and methyl mercury contents and distribution characteristics in cicada, cryptotympana atrata (fabricius)[J]. Bulletin of Environmental Contamination & Toxicology, 2010, 84(6):749-753. [15] 单长清, 刘汝海, 单红仙. 胶州湾近岸沉积物-海水汞的释放研究[J]. 海洋湖沼通报, 2006(4):44-51. SHAN C Q, LIU R H, SHAN H X. The research on releasing of mercury from Jiaozhou Bay offshore sediment to seawater[J], Transactions of Oceanology and Limnology, 2006 (4):44-51(in Chinese).
[16] 王欣悦, 贺春凤, 王定勇, 等. 三峡库区消落带土壤淹水过程中汞的释放及甲基化特征[J]. 环境化学, 2015, 34(1):172-177. WANG X Y, HE C F, WANG D Y, et al. Releases and methylation of soil mercury in water-level fluctuating zone of the three gorges reservoir region[J]. Environmental Chemistry, 2015, 34(1):172-177(in Chinese).
[17] 赵健. 长江口滨岸潮滩汞的环境地球化学研究[D]. 上海:华东师范大学, 2010. ZHAO J. Environmental geochemistry of mercury in intertidal flat of the Yangtze Estuary[D]. Shanghai:East China Normal University, 2010(in Chinese). [18] 王平安. 干湿交替环境土壤汞赋存形态及其动态变化[D]. 重庆:西南大学, 2007. WANG P A. Dynamic variation of mercury species in soil in wet-dry rotation environment[D]. Chongqing:Southwest University, 2007(in Chinese). [19] 郑顺安, 李晓华, 徐志宇. 污灌区盐分累积对土壤汞吸附行为影响的模拟研究[J]. 环境科学, 2014, 35(5):1939-1945. ZHENG S A, LI X H, XU Z Y. Simulation study on the effect of salinity on the adsorption behavior of mercury in wastewater-irrigated area[J]. Environmental Science, 2014, 35(5):1939-1945(in Chinese).
[20] 何熙. 三峡库区消落带土壤(沉积物)总汞及甲基汞变化特征[D]. 重庆:西南大学, 2013. HE X. Variation characteristics of total mercury and methylmercury in soil (sediment) in water-level-fluctuating zone of the Three Gorge Reservoir Region[J]. Chongqing:Southwest University, 2013(in Chinese). [21] LIANG P, ZHANG C, YANG Y K, et al.A simulation study of mercury release fluxes from soils in wet-dry rotation environment[J]. Journal of Environmental Sciences, 2014, 26(7):1445-1452. [22] KORTHALS E T, MR Winfrey. Seasonal and spatial variations inmercurymethylation and demethylation in an oligotrophic lake[J]. Appl Environ Microbiol, 1987, 53(10):2397-2404. [23] 吴浩. 中国主要红树林湿地中甲基汞的分布规律及其微生物甲基化作用[D]. 厦门:厦门大学, 2009. WU H. Distribution of methylmercury and microbial methylation in main mangrove wetlands of China[J]. Xiamen:Xiamen University, 2009(in Chinese). [24] 贺春凤. 三峡库区消落带土壤淹水过程汞释放与甲基化特征的模拟研究[D]. 重庆:西南大学, 2013. HE C F. Mesocosm of mercury release and methylation characteristic in the soil during the flooding in water level fluctuating zone of three gorges reservoir region[J]. Chongqing:Southwest University, 2015(in Chinese). [25] MANIN-DOIMEADIOS RCR,TESSIER E, AMOUROUX D, et al. Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes[J]. Marine Chemistry, 2017, 90(1):107-123. [26] 张翔. 三峡库区消落带典型植物淹水后汞的动态变化及其释放特征[D]. 重庆:西南大学, 2015. ZHANG X. Mercurydynamic and release characteristics of several plants collected from the water-Level fluctuation zone of the Three Gorges Reservoir Area during flooding[J]. Chongqing:Southwest University, 2015(in Chinese). [27] LIU J L, FENG X B, QIU G L, et al. Intercomparison and applicability of some dynamic and equilibrium approaches to determine methylated mercury species in pope water[J]. Environmental Toxicology & Chemistry, 2011, 30(8):1739-1744. [28] 谷春豪, 许怀凤, 仇广乐. 汞的微生物甲基化与去甲基化机理研究进展[J]. 环境化学, 2013, 32(6):926-936. GU C H, XU H F, QIU G L. The progress in research on mechanism of microbial mercury methylation and de-methylation[J]. Environmental Chemistry, 2013, 32(6):926-936(in Chinese).
[29] BIENVENUE E, BOUDOU A, DESMAZES J P, et al. Transport of mercury compounds across bimolecular lipid membranes:Effect of lipid composition, pH and chloride concentration[J]. Chemico-Biological Interactions, 1984, 48(1):91-101. [30] BARKAY T, GILLMAN M, TURNER R R. Effects of dissolved organic carbon and salinity on bioavailability of mercury[J].Applied & Environmental Microbiology, 1997, 63(11):4267-4271. [31] WU H, DING Z H, LIU Y, et al. Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China[J]. Journal of Environmental Sciences, 2011, 23(1):14-21. [32] BOYD E S, YU R Q, TBARKAY T, et al. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah[J]. Science of the Total Environment, 2017, 581:495-506. -

计量
- 文章访问数: 1236
- HTML全文浏览数: 1195
- PDF下载数: 177
- 施引文献: 0