锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理

高卫国, 钱林波, 韩璐, 陈梦舫. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理[J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
引用本文: 高卫国, 钱林波, 韩璐, 陈梦舫. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理[J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
GAO Weiguo, QIAN Linbo, HAN Lu, CHEN Mengfang. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism[J]. Environmental Chemistry, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
Citation: GAO Weiguo, QIAN Linbo, HAN Lu, CHEN Mengfang. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism[J]. Environmental Chemistry, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302

锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理

  • 基金项目:

    国家自然科学基金(51309214,21507138)资助.

Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism

  • Fund Project: Supported by the National Science Foundation of China (51309214, 21507138).
  • 摘要: 本文探究了磁性纳米铁锰氧体(MnFe2O4)及其黏土矿物负载材料对六价铬(Cr(Ⅵ))的吸附作用,同时研究了锰铁氧体-柠檬酸溶液体系中,铁锰氧体催化柠檬酸还原Cr(Ⅵ)的机理.结果表明,MnFe2O4材料对Cr(Ⅵ)的吸附量随着吸附时间的增加而增加,在0—5 min内快速吸附并达到平衡,符合准二级动力学模型.伴随MnFe2O4负载量的增加,凹凸棒土负载铁锰氧体(ATP-FeMn)的吸附量大幅增加,ATP-FeMn14吸附量最大达到了29.2 mg·g-1,且吸附等温线均可用Langmuir方程或Freundlich方程拟合,属于单分子层吸附.MnFe2O4和负载ATP材料吸附Cr(Ⅵ)的最佳pH值为3—4,ATP-FeMn14对六价铬的去除率最高,最佳投加量为5 g·L-1.在铁锰氧体-柠檬酸体系中,溶液pH值是影响Cr(Ⅵ)的去除效率的重要因素,当溶液pH值在4和5时,Cr(Ⅵ)的去除率(76.5%、66.2%)显著高于其他处理;4 mmol· L-1柠檬酸的处理去除率(89.8%)显著高于其他浓度柠檬酸的处理去除率;而在相同体系中,MnFe2O4的处理去除率(89.8%)显著高于其他研究材料.本研究表明铁锰氧体不仅对Cr(Ⅵ)具有良好的吸附性能,在与有机酸共存时,还可以催化有机酸还原Cr(Ⅵ),降低Cr(Ⅵ)的环境风险.
  • 加载中
  • [1] UYSAL M, AR I. Removal of Cr(Ⅵ) from industrial wastewaters by adsorption Part Ⅰ:Determination of optimum conditions[J]. Journal of Hazardous Materials, 2007, 149(2):482-491.
    [2] VOITKUN V, ZHITKOVICH A, COSTA M. Cr(Ⅲ)-mediated crosslinks of glutathione or amino acids to the DNA phosphate backbone are mutagenic in human cells[J]. Nucleic Acids Research, 1998, 26(8):2024-2030.
    [3] COSTA M. Toxicity and carcinogenicity of Cr(Ⅵ) in animal models and humans[J]. Critical Reviews in Toxicology, 1997, 27(5):431-442.
    [4] SHARMA Y C. Cr(Ⅵ) removal from industrial effluents by adsorption on an indigenous low-cost material[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2003, 215(1):155-162.
    [5] BHATTACHARYA A K, NAIYA T K, MANDAL S N, et al. Adsorption, kinetics and equilibrium studies on removal of Cr(Ⅵ) from aqueous solutions using different low-cost adsorbents[J]. Chemical Engineering Journal, 2008, 137(3):529-541.
    [6] ALOWITZ M J, SCHERER M M. Kinetics of nitrate, nitrite, and Cr(Ⅵ) reduction by iron metal.[J]. Environmental Science & Technology, 2002, 36(3):299-306.
    [7] BARRERA C E. A review of chemical, electrochemical and biological methods for aqueous Cr(Ⅵ) reduction.[J]. Journal of Hazardous Materials, 2012, 223-224(2):1-12.
    [8] 郑超, 彭辉婷, 杨杰文,等. 纳米氧化铁催化柠檬酸还原Cr(Ⅵ)及其土壤环境意义[J]. 环境化学, 2016, 35(11):2370-2376.

    ZHENG C, PENG H, YANG J W, et al. Characterization of nano iron oxide catalyzed Cr (Ⅵ) reduction by citric acid and its significance to soil environments[J]. Environmental Chemistry, 2016, 35(11):23702376(in Chinese).

    [9] 周红艳, 李志, 田晓芳,等. 高岭石表面吸附态Mn(Ⅱ)对有机酸还原Cr(Ⅵ)的影响[J]. 南京农业大学学报, 2009, 32(1):131-135.

    ZHOU H Y, LI Z, TIAN X F, et al. The influence of Mn(Ⅱ) adsorbed by kaolinite on the reduction of Cr(Ⅵ) by organic acids[J]. Journal of Naming Agricultural University, 2009,32(1):131-135(in Chinese).

    [10] SUN J, MAO JD, GONG H, et al. Fe(Ⅲ) photocatalytic reduction of Cr(Ⅵ) by low-molecular-weight organic acids with alpha-OH.[J]. Journal of Hazardous Materials, 2009, 168(2-3):1569-1574.
    [11] 李乐卓, 王三反, 常军霞,等. 中和共沉淀-铁氧体法处理含镍、铬废水的实验研究[J]. 环境污染与防治, 2015, 37(1):31-34.

    LI L Z, WANG S F, CHANG J X, et al. Study on the treatment of containing nickel and chromium wastewater by neutral coprecipitation/ferrite process[J]. Environmental Pollution and Control, 2015, 37(1):31-34(in Chinese).

    [12] 李红玑, 李宁, 吴喜勇, 等. 凹凸棒土合成方钠石分子筛及对铬的吸附效果研究[J]. 当代化工, 2015, 44(9):2124-2127.

    LI HJ, LI N, WU Y X, et al. Research on synthesis of sodalite from attapulgite and its adsorption effect for chromium[J]. Contemorary Chemical Industry, 2015, 44(9):2124-2127(in Chinese).

    [13] 刘静静. 吸附法去除饮用水中六价铬实验研究[D]. 成都:西南交通大学, 2015. LIU J J. Study on the remediation of Cr(Ⅵ) by adsorption in the drinking water[D]. Chengdu:Southwest Jiaotong University, 2015(in Chinese).
    [14] 孔泳, 王志良, 倪珺华,等. 凹凸棒土应用于重金属离子吸附剂的研究[J]. 分析测试学报, 2010, 29(12):1224-1227.

    KONG Y, WANG Z L, NI J H, et al, Application of attapulgite to adsorption of heavy metal ions (J). Journal of Instrumental Analysis, 2010, 29(12), 1224-1227(in Chinese).

    [15]
    [16] BROOKSHAW D R, COKER V S, LLOYD J R, et al. Redox interactions between Cr(Ⅵ) and Fe(Ⅱ) in bioreduced biotite and chlorite.[J]. Environmental Science & Technology, 2014, 48(19):11337-11342.
    [17] SARKAR B, NAIDU R, KRISHNAMURTI G S, et al. Manganese(Ⅱ)-catalyzed and clay-minerals-mediated reduction of chromium(Ⅵ) by citrate.[J]. Environmental Science & Technology, 2013, 47(23):13629-13636.
  • 加载中
计量
  • 文章访问数:  1672
  • HTML全文浏览数:  1639
  • PDF下载数:  127
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-10-13
  • 刊出日期:  2018-07-15
高卫国, 钱林波, 韩璐, 陈梦舫. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理[J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
引用本文: 高卫国, 钱林波, 韩璐, 陈梦舫. 锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理[J]. 环境化学, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
GAO Weiguo, QIAN Linbo, HAN Lu, CHEN Mengfang. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism[J]. Environmental Chemistry, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302
Citation: GAO Weiguo, QIAN Linbo, HAN Lu, CHEN Mengfang. Iron manganese minerals catalyzed Cr(Ⅵ) reduction by citric acid and its mechanism[J]. Environmental Chemistry, 2018, 37(7): 1525-1533. doi: 10.7524/j.issn.0254-6108.2017101302

锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理

  • 1.  中国科学院土壤环境与污染修复重点实验室, 中国科学院南京土壤研究所, 南京, 210008;
  • 2.  中国科学院大学, 北京, 100049
基金项目:

国家自然科学基金(51309214,21507138)资助.

摘要: 本文探究了磁性纳米铁锰氧体(MnFe2O4)及其黏土矿物负载材料对六价铬(Cr(Ⅵ))的吸附作用,同时研究了锰铁氧体-柠檬酸溶液体系中,铁锰氧体催化柠檬酸还原Cr(Ⅵ)的机理.结果表明,MnFe2O4材料对Cr(Ⅵ)的吸附量随着吸附时间的增加而增加,在0—5 min内快速吸附并达到平衡,符合准二级动力学模型.伴随MnFe2O4负载量的增加,凹凸棒土负载铁锰氧体(ATP-FeMn)的吸附量大幅增加,ATP-FeMn14吸附量最大达到了29.2 mg·g-1,且吸附等温线均可用Langmuir方程或Freundlich方程拟合,属于单分子层吸附.MnFe2O4和负载ATP材料吸附Cr(Ⅵ)的最佳pH值为3—4,ATP-FeMn14对六价铬的去除率最高,最佳投加量为5 g·L-1.在铁锰氧体-柠檬酸体系中,溶液pH值是影响Cr(Ⅵ)的去除效率的重要因素,当溶液pH值在4和5时,Cr(Ⅵ)的去除率(76.5%、66.2%)显著高于其他处理;4 mmol· L-1柠檬酸的处理去除率(89.8%)显著高于其他浓度柠檬酸的处理去除率;而在相同体系中,MnFe2O4的处理去除率(89.8%)显著高于其他研究材料.本研究表明铁锰氧体不仅对Cr(Ⅵ)具有良好的吸附性能,在与有机酸共存时,还可以催化有机酸还原Cr(Ⅵ),降低Cr(Ⅵ)的环境风险.

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回