甲氧苄啶在有机酸络合Fe2+活化过硫酸钠体系中的降解机制

王慧娴, 罗建中, 梁子豪, 宋健, 刘锦华. 甲氧苄啶在有机酸络合Fe2+活化过硫酸钠体系中的降解机制[J]. 环境化学, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401
引用本文: 王慧娴, 罗建中, 梁子豪, 宋健, 刘锦华. 甲氧苄啶在有机酸络合Fe2+活化过硫酸钠体系中的降解机制[J]. 环境化学, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401
WANG Huixian, LUO Jianzhong, LIANG Zihao, SONG Jian, LIU Jinhua. Degradation mechanism of trimethoprim by organic acid chelating Fe2+-activated sodium peroxydisulfate[J]. Environmental Chemistry, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401
Citation: WANG Huixian, LUO Jianzhong, LIANG Zihao, SONG Jian, LIU Jinhua. Degradation mechanism of trimethoprim by organic acid chelating Fe2+-activated sodium peroxydisulfate[J]. Environmental Chemistry, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401

甲氧苄啶在有机酸络合Fe2+活化过硫酸钠体系中的降解机制

Degradation mechanism of trimethoprim by organic acid chelating Fe2+-activated sodium peroxydisulfate

  • 摘要: 在有机酸(OAS)/Fe2+/过硫酸钠(PDS)体系中生成的具有强氧化能力的硫酸根自由基(SO4·-),可以降解水中难降解污染物甲氧苄啶(TMP).分别探讨了柠檬酸(CA)浓度、Fe2+浓度、PDS浓度、pH值对甲氧苄啶降解的影响,以及不同浓度的4种有机酸在不同pH值下对TMP降解的影响.结果表明,当TMP浓度20 μmol·L-1,pH=7,温度25℃,反应时间30 min,摩尔比CA:Fe2+:PDS:TMP=5:15:40:1时,TMP的降解率高达82.55%;柠檬酸和EDTA有促进TMP降解作用,焦磷酸钠和草酸起抑制TMP降解作用.猝灭实验证实了TMP的降解是SO4·-和·OH共同作用的结果,SO4-·起主导作用;液相色谱质谱检出5种中间产物,推测TMP的降解路径涉及羟基化反应、脱甲氧基化反应和裂解反应.
  • 加载中
  • [1] 陈瑞玲.磺胺类药与甲氧苄啶的合理运用[J]. 中国临床医生,2008,36(7):18-20.

    CHEN R L. Sulfa drugs with a reasonable use of trimethoprim[J]. The Chinese clinical doctors, 2008, 36(7):18-20(in Chinese).

    [2] 郑虎.药物化学(第5版)[M]. 北京:人民卫生出版社,2005:297. ZHENG H. Pharmaceutical chemistry (fifth edition)[M]. Beijing:people's medical publishing house, 2005:297(in Chinese).
    [3] FATTA-KASSINOS D, MERIC S, NIKOLAOU A. Pharmaceutical residues in environmental waters and wastewater:Current state of knowledge and future research[J]. Analytical and Bioanalytical Chemistry, 2011, 399:251-275.
    [4] SUI Q, WANG B, ZHAO W, et al. Identification of priority pharmaceuticals in the water environment of China[J]. Chemosphere, 2012, 89(3):280-286.
    [5] LE-MINH N, KHAN S J, DREWES J E, et al. Fate of antibiotics during municipal water recycling treatment processes[J]. Water Research, 2010, 44:4295-4323.
    [6] MARCO D L, VINCENZO D L, MICRO D B, et al. Sublethal effects of trimethoprim on four freshwater organisms[J]. Ecotoxicology and Environmental Safety, 2012, 82:114-121.
    [7] KOLAR B, ARNYS L, JERETIN B, et al. The toxic effect of oxytetracycline and trimethoprim in the aquatic environment[J]. Chemosphere, 2014, 115:75-80.
    [8] OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal:Current development, challenges and prospects[J]. Applied Catalysis B:Environmental, 2016, 194:169-201.
    [9] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17:513-886.
    [10] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3):1027-1284.
    [11] ZOU J, MA J, CHEN L, et al. Rapid acceleration of ferrous iron/peroxymono sulfate oxidation of organic pollutants by promoting Fe(Ⅲ)/Fe(Ⅱ) cycle with hydroxylamine[J]. Environmental Science &Technology, 2013, 47:11685-11691.
    [12] JI Y F, XIE W P, FAN Y, et al. Degradation of trimethoprim by thermo-activated persulfate oxidation:reaction kinetics and transformation mechanisms[J]. Chemical Engineering Journal, 2016, 286:16-24.
    [13] HOU S D, LING L, SHANG C, et al. Degradation kinetics and pathways of haloacetonitriles by the UV/persulfate process[J]. Chemical Engineering Journal, 2017, 320:478-484.
    [14] CAI C, WANG L, GAO H, et al. Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of acid orange 7 in water[J]. Journal of Environmental Sciences-China, 2014, 26(6):1267-1273.
    [15] ZHANG Z L, YANG Q, WANG J L. Degradation of trimethoprim by gamma irradiation in the presence of persulfate[J]. Radiation Physics and Chemistry, 2016, 127:85-91.
    [16] JIANG X X, WU Y L, WANG P, et al. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion[J]. Environmental Science and Pollution Research, 2013, 20(7):4947-4953.
    [17] ZHANG Y Q, XIE X F, HUANG W L, et al. Degradation of aniline by Fe2+-activated persulfate oxidation at ambient temperature[J]. Journal of Central South University, 2013, 20(4):1010-1014.
    [18] 郑伟,张金凤,王联红.柠檬酸-Fe(Ⅱ)/K2S2O8对敌草隆降解的研究[J]. 环境化学,2008,27(1):19-22.

    ZHENG W, ZHANG J F, WANG L H. Degradation of diuron by citric acid-iron(Ⅱ) catalyzed potassium persulfate[J]. Environmental chemistry, 2008, 27(1):19-22(in Chinese).

    [19] LAU T K, CHU W, GRAHAM N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82- study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science & Technology, 2007, 41(2):613-619.
    [20] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1):1-84.
    [21] TSAO M S, WILMARTH W K. The aqueous chemistry of inorganic freeradicals.Ⅰ. the mechanism of the photolytic decomposition of aqueous persulfate ion and evidence regarding the sulfate-hydroxyl radical interconversion equilibrium[J]. The Journal of Physical Chemistry, 1959, 63(3):346-353.
    [22] 刘国强,王斌楠,廖云燕,等.热活化过硫酸盐降解水中的2-氯苯酚[J]. 环境化学,2014,33(8):1396-1403.

    LIU G Q, WANG B N, LIAO Y Y, et al. Degradation of o-chlorophenol by heat activated persulfate[J]. Environmental chemistry, 2014, 33(08):1396-1403(in Chinese).

    [23] 程艳,高静,徐红纳,等.络合剂EDTA简介[M]. 化学教育,2009,30(5):4-6.

    CHEN Y, GAO J, XU H N, et al. Complexing agent EDTA introduction[M]. Chemical education, 2009, 30(5):4-6(in Chinese).

    [24] LIAN G C, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9):1213-1223.
    [25] RASTOGI A, AI-ABED S R, DIONYSIOU D D. Sulfate radical-based ferrous-perox monosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B:Environmental, 2009, 85(3/4):171-179.
    [26] NETA P, MADHAVAN V, ZEMEL H, et al. Rate constants and mechanism of reaction of SO4·- with aromatic compounds[J]. Journal of the American Chemical Society, 1977, 99:163-164.
    [27] HILDENBRAND K, BEHRENS G, SCHULTE-FROHLINDE D. Comparison of the reaction of·OH and of SO4·- radicals with pyrimidine nucleosides. An electron spin resonances study in aqueous solution[J]. Journal of the Chemical Society Perkin Transactions 2, 1989:283-289.
    [28] ANQUANDAH G A K, SHARMA V K, ANDREW KNIGHT D, et al. Oxidation of trimethoprim by ferrate (Ⅵ):kinetics, products, and antibacterial activity[J]. Environmental Science & Technology, 2011, 5:10575-10581.
    [29] HE X, CRUZ A A D L, OSHEA K E, et al. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate by sulfate radical-based advanced oxidation processes[J]. Water Research, 2014, 63:168-178.
    [30] FANG G D, DIONYSIOU D D, ZHOU D M, et al. Transformation of polychlorinated biphenyls by persulfate at ambient temperature[J]. Chemosphere, 2013, 90(5):1573-1580.
    [31] ANIPSITAKIS G P, DIONYSIOU D D, GONZALEZ M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds.Implications of chloride ions[J]. Environmental Science & Technology, 2006, 40:1000-1007.
    [32] MICHAEL I, HAPESHI E, OSORIO V, et al. Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale:Transformation products and ecotoxicity[J]. Science Total Environment, 2012, 430:167-173.
    [33] RADJENOVIC J, GODEHARD M, PETROVIC M, et al. Evidencing generation of persistent ozonation products of antibiotics roxithromycin and trimethoprim[J]. Environmental Science & Technology, 2009, 43(17):808-815.
  • 加载中
计量
  • 文章访问数:  1574
  • HTML全文浏览数:  1539
  • PDF下载数:  167
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-12-14
  • 刊出日期:  2018-10-15
王慧娴, 罗建中, 梁子豪, 宋健, 刘锦华. 甲氧苄啶在有机酸络合Fe2+活化过硫酸钠体系中的降解机制[J]. 环境化学, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401
引用本文: 王慧娴, 罗建中, 梁子豪, 宋健, 刘锦华. 甲氧苄啶在有机酸络合Fe2+活化过硫酸钠体系中的降解机制[J]. 环境化学, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401
WANG Huixian, LUO Jianzhong, LIANG Zihao, SONG Jian, LIU Jinhua. Degradation mechanism of trimethoprim by organic acid chelating Fe2+-activated sodium peroxydisulfate[J]. Environmental Chemistry, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401
Citation: WANG Huixian, LUO Jianzhong, LIANG Zihao, SONG Jian, LIU Jinhua. Degradation mechanism of trimethoprim by organic acid chelating Fe2+-activated sodium peroxydisulfate[J]. Environmental Chemistry, 2018, 37(10): 2257-2266. doi: 10.7524/j.issn.0254-6108.2017121401

甲氧苄啶在有机酸络合Fe2+活化过硫酸钠体系中的降解机制

  • 1. 广东工业大学环境科学与工程学院, 广州, 510006

摘要: 在有机酸(OAS)/Fe2+/过硫酸钠(PDS)体系中生成的具有强氧化能力的硫酸根自由基(SO4·-),可以降解水中难降解污染物甲氧苄啶(TMP).分别探讨了柠檬酸(CA)浓度、Fe2+浓度、PDS浓度、pH值对甲氧苄啶降解的影响,以及不同浓度的4种有机酸在不同pH值下对TMP降解的影响.结果表明,当TMP浓度20 μmol·L-1,pH=7,温度25℃,反应时间30 min,摩尔比CA:Fe2+:PDS:TMP=5:15:40:1时,TMP的降解率高达82.55%;柠檬酸和EDTA有促进TMP降解作用,焦磷酸钠和草酸起抑制TMP降解作用.猝灭实验证实了TMP的降解是SO4·-和·OH共同作用的结果,SO4-·起主导作用;液相色谱质谱检出5种中间产物,推测TMP的降解路径涉及羟基化反应、脱甲氧基化反应和裂解反应.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回