粉煤灰基催化材料的研究进展

鲁敏, 熊祖鸿, 房科靖, 李继青, 黎涛. 粉煤灰基催化材料的研究进展[J]. 环境化学, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907
引用本文: 鲁敏, 熊祖鸿, 房科靖, 李继青, 黎涛. 粉煤灰基催化材料的研究进展[J]. 环境化学, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907
LU Min, XIONG Zuhong, FANG Kejing, LI Jiqing, LI Tao. Coal fly ash based catalytic materials: A review[J]. Environmental Chemistry, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907
Citation: LU Min, XIONG Zuhong, FANG Kejing, LI Jiqing, LI Tao. Coal fly ash based catalytic materials: A review[J]. Environmental Chemistry, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907

粉煤灰基催化材料的研究进展

  • 基金项目:

    国家自然科学基金(21606228)资助

Coal fly ash based catalytic materials: A review

  • Fund Project: Supported by the National Natural Science Foundation of China (21606228)
  • 摘要: 粉煤灰应用于催化材料的制备是实现其高附加值利用的重要途径,本文详细阐述了粉煤灰的化学组成与结构特性,综述了粉煤灰基催化剂在有机物降解、有机合成和催化制氢等领域的研究进展,讨论了粉煤灰在不同催化反应过程中的作用原理.粉煤灰作为一种富含Si、Al的复合载体,具有单一载体不可替代的优势,其组成与结构的改变对催化剂的性能有很大的影响,不同的活性组分与结构对应不同的反应类型,具有非常广泛的适应性.影响催化剂性能的主要因素包括:粉煤灰中Si—O—Si或Al—O—Si结构的重组,Fe、Ca、Na、K等元素对催化剂的修饰,活性组分与粉煤灰载体之间的相互作用等.由此可知,准确调控粉煤灰的化学组成与结构是提高粉煤灰基催化剂性能的重要手段,也是未来拓展粉煤灰高附加值利用空间的理论依据.
  • 加载中
  • [1] YAO Z T, JI X S, SARKER P K, et al. A comprehensive review on the applications of coal fly ash [J]. Earth-Science Reviews, 2015, 141: 105-121.
    [2] FLORES Y, FLORES R, GALLEGOS A A. Heterogeneous catalysis in the Fenton-type system reactive black 5/H2O2 [J]. Journal of Molecular Catalysis a-Chemical, 2008, 281 (1-2): 184-191.
    [3] 刘贤响, 杨柱, 袁治冶, 等. 硫酸铵改性粉煤灰催化合成环己酮乙二醇缩酮 [J].化工进展, 2009, 28(3): 499-503.

    LIU X X, YANG Z, YUAN Z Y, et al. Synthesis of cyclohexanone glycol ketal with fly ash catalyst modified by ammonium sulfate [J]. Chemical Industry and Engineering Progress, 2009, 28(3): 499-503(in Chinese).

    [4] NG P F, LI L, WANG S B, et al, Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts [J]. Environmental Science & Technology, 2007, 41(10): 3758-3762.
    [5] MANZ O E. Coal fly ash: A retrospective and future look [J]. Fuel, 1999, 78 (2), 133-136.
    [6] WANG S B. Application of solid ash based catalysts in heterogeneous catalysis [J]. Environmental Science & Technology, 2008, 42(19): 7055-7063.
    [7] GOODARZI F. Characteristics and composition of fly ash from Canadian coal-fired power plants [J]. Fuel, 2006, 85(10-11): 1418-1427.
    [8] MORENO N, QUEROL X, ANDRES J M, et al. Physicochemical characteristics of european pulverized coal combustion fly ashes [J]. Fuel, 2005, 84 (11), 1351-1363.
    [9] 李少辉, 赵澜, 包先成, 等. 粉煤灰的特性及其资源化综合利用 [J]. 混凝土, 2010, 4: 76-78. LI S H, ZHAO L, BAO X C, et al. Characteristics and comprehensive resources utilization of fly ash [J]. Concrete, 2010

    , 4: 76-78(in Chinese).

    [10] 胡小龙,孙青,徐春宏,等. 纳米TiO2/沸石复合材料光催化降解苯酚的性能 [J]. 化工进展, 2016, 35(5): 1519-1523.

    HU X L, SUN Q, XU C H, et al. Photocatalytic degradation of phenol with ano-TiO2/zeolite composite material [J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1519-1523(in Chinese).

    [11]
    [12] TAN L L, CHAI S P,MOHAMED A R. Synthesis and applications of graphene-based TiO2 photocatalysts [J]. Chem-SusChem, 2012, 5(10): 1868-1882.
    [13] ZHOU W Y, PANG Y H, LAI S T, et al. Fabrication of TiO2 nanoparticles loaded on coal fly ash composite with enhanced photocatalytic activity [J]. Journal of Nanoscience and Nanotechnology, 2012, 12(6): 4658-4663.
    [14] ZHANG J, CUI H, WANG B, et al. Preparation and characterization of fly ash cenospheres supported CuO-BiVO4 heterojunction composite [J]. Applied Surface Science, 2014, 300: 51-57.
    [15] YANG L, WANG F Z, HAKKI A, et al. The influence of zeolites fly ash bead/TiO2 composite material surface morphologies on their adsorption and photocatalytic performance [J]. Applied Surface Science, 2017, 392:687-696.
    [16] SONG J K, WANG X J, BU Y J, et al. Preparation, characterization, and photocatalytic activity evaluation of Fe-N-codoped TiO2/fly ash cenospheres floating photocatalyst [J]. Environmental Science and Pollution Research, 2016, 23(22): 22793-22802.
    [17] LU Z Y, ZHOU W C, HUO P W, et al. Performance of a novel TiO2 photocatalyst based on the magnetic floating fly-ash cenospheres for the purpose of treating waste by waste [J]. Chemical Engineering Journal, 2013, 225: 34-42.
    [18] LI Y, ZHANG F S. Catalytic oxidation of methyl orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash [J]. Chemical Engineering Journal, 2010, 158(2): 148-153.
    [19] OZAY H. Comparison study of low cost fly ash supported Cu, Co and Ni metal catalyst systems for the reduction of 4-Nitrophenol [J]. Science of Advanced Materials, 2013, 5(6): 575-582.
    [20] WANG N N, ZHAO Q, ZHANG A. Catalytic oxidation of organic pollutants in wastewater via a Fenton-like process under the catalysis of HNO3-modified coal fly ash [J]. Rsc Advances, 2017, 7(44): 27619-27628.
    [21] 商丹红, 张志生, 胡晨爽. 粉煤灰负载铁离子催化氧化活性黄染料废水 [J]. 环境工程学报, 2013, 7(3): 1040-1044.

    SHANG D H, ZHANG Z S, HU C S. Catalytic degradation of reactive yellow dye using ash fly supported iron ion [J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1040-1044(in Chinese).

    [22] DUC D S. Degradation of reactive blue 181 dye by heterogeneous fenton technique using modified fly ash [J]. Asian Journal of Chemistry, 2013, 25(7): 4083-4086.
    [23] MENG F Q, MA W, ZONG P P, et al. Synthesis of a novel catalyst based on Fe(Ⅱ)/Fe(Ⅲ) oxide and high alumina coal fly ash for the degradation of o-methyl phenol [J]. Journal of Cleaner Production, 2016, 133: 986-993.
    [24] 袁淼卉, 刘勇健. 粉煤灰基催化臭氧处理亚甲基蓝催化剂的制备 [J]. 环境科学与技术, 2012, 35(3): 104-108.

    YUAN M H, LIU Y J. Preparation of fly ash supported catalysts for treatment of methylene blue [J]. Environmental Science & Technology, 2012, 35(3): 104-108(in Chinese).

    [25] DEKA B, BHATTACHARYYA K G. Using coal fly ash as a support for Mn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization [J]. Journal of Environmental Management, 2015, 150: 479-488.
    [26] KHATRI C, RANI A. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance [J]. Fuel, 2008, 87(13-14): 2886-2892.
    [27] MAZUMDER N A, RANO R, SARMAH G. A green and efficient solid acid catalyst from coal fly ash for Fischer esterification reaction [J]. Journal of Industrial and Engineering Chemistry, 2015, 32: 211-217.
    [28] ZENG D L, LIU S L, GONG W J, et al. A Bronsted solid acid synthesized from fly ash for vapor phase dehydration of methanol [J]. Fuel, 2014, 119: 202-206.
    [29] CHO S Y, KANG S K, AHN J H, et al. Scandium(Ⅲ) triflate-TMSCl promoted cyclization of aziridin-1-yl oximes to 5,6-dihydro-4H-[1,2,4] oxadiazines [J]. Tetrahedron Letters, 2006, 47: 9029-9033.
    [30] GRONNOW M J, MACQUARRIE D J, CLARK J H, et al. A study into the use of microwaves and solid acid catalysts for Friedel-Crafts acylations [J]. Journal of Molecular Catalysis A: Chemical, 2005, 231(1-2): 47-51.
    [31] KHATRI C, JAIN D, RANI A. Fly ash-supported cerium triflate as an active recyclable solid acid catalyst for Friedel-Crafts acylation reaction [J]. Fuel, 2010, 89(12): 3853-3859
    [32] RANI A, KHATRI C, HADA R. Fly ash supported scandium triflate as an active recyclable solid acid catalyst for Friedel-Crafts acylation reaction [J]. Fuel Processing Technology, 2013, 116: 366-373.
    [33] CRIADO M, FERNANDEZ J A, PALOMO A, et al. Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part Ⅱ: 29Si MAS-NMR survey [J]. Microporous Mesoporous Materials, 2008, 109: 525-534.
    [34] JAIN D, KHATRI C, RANI A. Synthesis and characterization of novel solid base catalyst from fly ash [J]. Fuel, 2011, 90(6): 2083-2088.
    [35] MAZUMDER N A, RANO R. An efficient solid base catalyst from coal combustion fly ash for green synthesis of dibenzylideneacetone [J]. Journal of Industrial and Engineering Chemistry 2015, 29: 359-365.
    [36] THIRUNARAYANAN G, MAYAVEL P, THIRUMURTHY K. Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2012, 91: 18-22.
    [37] VERESHCHAGIN S N, KONDRATENKO E V, RABCHEVSKⅡ E V, et al. New approach to the preparation of catalysts for the oxidative coupling of methane [J]. Kinetics and Catalysis, 2012, 53(4): 449-455.
    [38] MISSENGUE R N M, LOSCH P, SEDRES G, et al. Transformation of south african coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst [J]. Comptes Rendus Chimie, 2017, 20(1): 78-86.
    [39] LI Y, HU S L, CHENG J H, et al. Acidic ionic liquid-catalyzed esterification of oleic acid for biodiesel synthesis [J]. Chinese Journal of Catalysis, 2014, 35(3): 396-406.
    [40] 黄从敏, 骆书桃, 张秋云, 等. 粉煤灰负载型固体碱催化大豆油制备生物柴油的研究 [J]. 太阳能学报, 2015, 36(8): 1959-1964.

    HUANG C M, LUO S T, ZHANG Q Y, et al. Research on synthesis of biodiesel oil from soybean oil by solid base catalysts with fly ash as carrier [J]. Acta Energiae Solaris Sinica, 2015, 36(8): 1959-1964(in Chinese).

    [41] CHAKRABORTY R, BEPARI S, BANERJEE A. Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts [J]. Chemical Engineering Journal, 2010, 165(3): 798-805.
    [42] MANIQUE M C, LACERDA L V, ALVES A K, et al. Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst [J]. Fuel, 2017, 190: 268-273.
    [43] VOLLI V, PURKAIT M K. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production [J]. Journal of Hazardous Materials, 2015, 297: 101-111.
    [44] BABAJIDE O, MUSYOKA N, PETRIK L, et al. Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production [J]. Catalysis Today, 2012, 190(1): 54-60.
    [45] SEADIRA T W P, SADANANDAM G, NTHO T, et al., Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol [J]. Applied Catalysis B-Environmental, 2018. 222: 133-145.
    [46] WANG S R, ZHANG F, CAI Q J, et al., Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst [J]. International Journal of Hydrogen Energy, 2014. 39(5): 2018-2025.
    [47] WANG S, ZHANG F, CAI Q J, et al., Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts [J]. International Journal of Hydrogen Energy, 2015. 40(35): 11406-11413.
    [48] ZHANG F, WANG S R, CHEN J H, et al., Effect of coal ash on the steam reforming of simulated bio-oil for hydrogen production over Ni/gamma-Al2O3 [J]. Bioresources, 2016. 11(3): 6808-6821.
    [49] WANG S B, LU G Q. Effect of chemical treatment on Ni/fly-ash catalysts in methane reforming with carbon dioxide [J]. Studies in Surface Science and Catalysis, 2007, 167: 275-280.
    [50] BEPARI S, PRADHAN N C, DALAI A K. Selective production of hydrogen by steam reforming of glycerol over Ni/Fly ash catalyst [J]. Catalysis Today, 2017, 291:36-46.
    [51] 王钧伟, 陈培, 刘瑞卿, 等. 粉煤灰负载Fe2O3脱除气态单质汞的试验研究 [J]. 环境科学学报, 2014, 34(12): 3152-3157.

    WANG J W, CHEN P, LIU R Q, et al. Hg0 removal by a fly ash-supported Fe2O3 catalyst [J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3152-3157(in Chinese).

    [52] 罗道成, 易平贵, 刘俊峰, 等. 粉煤灰-NaClO非均相催化氧化CN-的研究 [J]. 煤炭学报, 2003, 28(6): 646-649.

    LUO D C, YI P G, LIU J F, et al. Study on fly ash-NaClO heterogeneous catalytic oxidation of CN- [J]. Journal of China Coal Society, 2003, 28(6): 646-649(in Chinese).

    [53] HINTSHO N, SHAIKJEE A, TRIPHATI P K, et al. Effect of nitrogen and hydrogen gases on the synthesis of carbon nanomaterials from coal waste fly ash as a catalyst [J]. Journal of Nanoscience and Nanotechnology, 2016, 16(5): 4672-4683.
  • 加载中
计量
  • 文章访问数:  2469
  • HTML全文浏览数:  2447
  • PDF下载数:  53
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-09
  • 刊出日期:  2019-02-15
鲁敏, 熊祖鸿, 房科靖, 李继青, 黎涛. 粉煤灰基催化材料的研究进展[J]. 环境化学, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907
引用本文: 鲁敏, 熊祖鸿, 房科靖, 李继青, 黎涛. 粉煤灰基催化材料的研究进展[J]. 环境化学, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907
LU Min, XIONG Zuhong, FANG Kejing, LI Jiqing, LI Tao. Coal fly ash based catalytic materials: A review[J]. Environmental Chemistry, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907
Citation: LU Min, XIONG Zuhong, FANG Kejing, LI Jiqing, LI Tao. Coal fly ash based catalytic materials: A review[J]. Environmental Chemistry, 2019, 38(2): 297-305. doi: 10.7524/j.issn.0254-6108.2018040907

粉煤灰基催化材料的研究进展

  • 1.  中国科学院广州能源研究所, 广州, 510640;
  • 2.  中国科学院可再生能源重点实验室, 广州, 510640;
  • 3.  广东省新能源和可再生能源研究开发与应用重点实验室, 广州, 510640
基金项目:

国家自然科学基金(21606228)资助

摘要: 粉煤灰应用于催化材料的制备是实现其高附加值利用的重要途径,本文详细阐述了粉煤灰的化学组成与结构特性,综述了粉煤灰基催化剂在有机物降解、有机合成和催化制氢等领域的研究进展,讨论了粉煤灰在不同催化反应过程中的作用原理.粉煤灰作为一种富含Si、Al的复合载体,具有单一载体不可替代的优势,其组成与结构的改变对催化剂的性能有很大的影响,不同的活性组分与结构对应不同的反应类型,具有非常广泛的适应性.影响催化剂性能的主要因素包括:粉煤灰中Si—O—Si或Al—O—Si结构的重组,Fe、Ca、Na、K等元素对催化剂的修饰,活性组分与粉煤灰载体之间的相互作用等.由此可知,准确调控粉煤灰的化学组成与结构是提高粉煤灰基催化剂性能的重要手段,也是未来拓展粉煤灰高附加值利用空间的理论依据.

English Abstract

参考文献 (53)

返回顶部

目录

/

返回文章
返回