朱广伟, 秦伯强, 张运林, 等. 近70年来太湖水体磷浓度变化特征及未来控制策[J]. 湖泊科学, 2021, 33(4): 957-973
Zhu G W, Qin B Q, Zhang Y L, et al. Fluctuation of phosphorus concentration in Lake Taihu in the past 70 years and future control strategy[J]. Journal of Lake Sciences, 2021, 33(4): 957-973(in Chinese)
|
Tang C C, Zhang X Y, He Z W, et al. Role of extracellular polymeric substances on nutrients storage and transfer in algal-bacteria symbiosis sludge system treating wastewater[J]. Bioresource Technology, 2021, 331: 125010
|
Yao B, Xi B D, Hu C M, et al. A model and experimental study of phosphate uptake kinetics in algae: Considering surface adsorption and P-stress[J]. Journal of Environmental Sciences (China), 2011, 23(2): 189-198
|
Xu Y, Wu Y H, Esquivel-Elizondo S, et al. Using microbial aggregates to entrap aqueous phosphorus[J]. Trends in Biotechnology, 2020, 38(11): 1292-1303
|
Powell N, Shilton A, Chisti Y, et al. Towards a luxury uptake process via microalgae: Defining the polyphosphate dynamics[J]. Water Research, 2009, 43(17): 4207-4213
|
Falkner G, Falkner R. The Complex Regulation of the Phosphate Uptake System of Cyanobacteria[M]//Bioenergetic Processes of Cyanobacteria. Dordrecht: Springer Netherlands, 2011: 109-130
|
Blanco-Ameijeiras S, Moisset S A M, Trimborn S, et al. Elemental stoichiometry and photophysiology regulation of Synechococcus sp. PCC7002 under increasing severity of chronic iron limitation[J]. Plant & Cell Physiology, 2018, 59(9): 1803-1816
|
Lawrence J R, Swerhone G, Kwong Y. Natural attenuation of aqueous metal contamination by an algal mat[J]. Canadian Journal of Microbiology, 1998, 44(9): 825-832
|
杨宏伟. 黄河沉积物铁对磷赋存形态及释放的影响[C]//中国环境科学学会. 2019中国环境科学学会科学技术年会论文集. 西安: 中国环境科学学会, 2019: 783-790
|
骆科枢. 淡水藻类对磷、铁的协同吸收及增殖过程研究[D]. 广州: 广东工业大学, 2015: 50-55 Luo K S. Study on synergistic absorption and proliferation of phosphorus and iron by freshwater algae[D]. Guangzhou: Guangdong University of Technology, 2015: 50
-55(in Chinese)
|
Xu H C, Jiang H L, Yu G H, et al. Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation[J]. Chemosphere, 2014, 117: 815-822
|
Ahern K S, Ahern C R, Udy J W. In situ field experiment shows Lyngbya majuscula (Cyanobacterium) growth stimulated by added iron, phosphorus and nitrogen[J]. Harmful Algae, 2008, 7(4): 389-404
|
Molot L A, Watson S B, Creed I F, et al. A novel model for cyanobacteria bloom formation: The critical role of anoxia and ferrous iron[J]. Freshwater Biology, 2014, 59(6): 1323-1340
|
宋婵媛, 白芳, 李天丽, 等. 绿藻栅藻对微囊藻的抑制效应及评价[J]. 水生生物学报, 2022, 46(12): 1916-1923
Song C Y, Bai F, Li T L, et al. Inhibitory effect of Scenedesmus sp. on Microcystis aeruginosa and its evaluation[J]. Acta Hydrobiologica Sinica, 2022, 46(12): 1916-1923(in Chinese)
|
Hassler C S, Twiss M R. Bioavailability of iron sensed by a phytoplanktonic Fe-bioreporter[J]. Environmental Science & Technology, 2006, 40(8): 2544-2551
|
Fujii M, Dang T C, Rose A L, et al. Effect of light on iron uptake by the freshwater Cyanobacterium Microcystis aeruginosa[J]. Environmental Science & Technology, 2011, 45(4): 1391-1398
|
安振珍, 张铁明, 李玉华, 等. Fe3+对脆杆藻增殖的影响[J]. 世界科技研究与发展, 2008, 30(4): 407-409
An Z Z, Zhang T M, Li Y H, et al. Effects of Fe3+ on Fragilaria sp. in fresh water[J]. World Sci-Tech R & D, 2008, 30(4): 407-409(in Chinese)
|
Zhang T, He J, Luo X Z. Effect of Fe and EDTA on freshwater cyanobacteria bloom formation[J]. Water, 2017, 9(5): 326
|
Griffiths M J, Garcin C, van Hille R P, et al. Interference by pigment in the estimation of microalgal biomass concentration by optical density[J]. Journal of Microbiological Methods, 2011, 85(2): 119-123
|
陈明华, 谢良国, 付志强, 等. 丙酮法和热乙醇法测定浮游植物叶绿素a的方法比对[J]. 环境监测管理与技术, 2016, 28(2): 46-48
Chen M H, Xie L G, Fu Z Q, et al. Comparison of two methods for measurement of phytoplanktonic chlorophyll-a[J]. The Administration and Technique of Environmental Monitoring, 2016, 28(2): 46-48(in Chinese)
|
Najafi A, Hashemi M. Vortex-assisted natural deep eutectic solvent microextraction using response surface methodology optimization for determination of orthophosphate in water samples by molybdenum blue method[J]. Journal of Separation Science, 2019, 42(19): 3102-3109
|
Rydin E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research, 2000, 34(7): 2037-2042
|
Yue F F, Zhang J R, Xu J X, et al. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method[J]. Frontiers in Nutrition, 2022, 9: 963318
|
Chen B, Li F, Liu N, et al. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium[J]. Bioresource Technology, 2015, 190: 299-306
|
Machuca A, Milagres A M F. Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus[J]. Letters in Applied Microbiology, 2003, 36(3): 177-181
|
刘球英, 骆艳娥. 改进Ferrozine法测定溶液中的二价铁、三价铁及总铁[J]. 科学技术与工程, 2016, 16(10): 85-88
Liu Q Y, Luo Y E. Determination of Fe2+, Fe3+ and total iron ion with improved ferrozine UV-spectrophotometry[J]. Science Technology and Engineering, 2016, 16(10): 85-88(in Chinese)
|
Kappler A, Bryce C, Mansor M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374
|
方振东, 龙向宇, 唐然, 等. 胞外聚合物结合磷效能的研究[J]. 环境科学学报, 2011, 31(11): 2374-2379
Fang Z D, Long X Y, Tang R, et al. The phosphorus-incorporating property of extracellular polymer substances[J]. Acta Scientiae Circumstantiae, 2011, 31(11): 2374-2379(in Chinese)
|
Joshi S R, Kukkadapu R K, Burdige D J, et al. Organic matter remineralization predominates phosphorus cycling in the mid-bay sediments in the Chesapeake Bay[J]. Environmental Science & Technology, 2015, 49(10): 5887-5896
|
Barcytė D, Pilátová J, Mojzeš P, et al. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate[J]. Journal of Phycology, 2020, 56(1): 217-232
|
Beutel M W, Leonard T M, Dent S R, et al. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake[J]. Water Research, 2008, 42(8/9): 1953-1962
|
谭啸, 石琳, 段志鹏, 等. 氮磷比对微囊藻与栅藻磷赋存及分配的影响[J]. 湖泊科学, 2022, 34(5): 1461-1470
Tan X, Shi L, Duan Z P, et al. Influence of N∶P ratio on the phosphorus accumulation and distribution of Microcystis and Scenedesmus[J]. Journal of Lake Sciences, 2022, 34(5): 1461-1470(in Chinese)
|
Wu Q R, Guo L, Li X Z, et al. Effect of phosphorus concentration and light/dark condition on phosphorus uptake and distribution with microalgae[J]. Bioresource Technology, 2021, 340: 125745
|
Qiu Y T, Wang Z H, Liu F, et al. Inhibition of Scenedesmus quadricauda on Microcystis flos-aquae[J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5907-5916
|
池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1-7
Chi J L, Hao M, Wang Z X, et al. Advances in research and application of phosphorus-solubilizing microorganism[J]. Journal of Microbiology, 2021, 41(1): 1-7(in Chinese)
|
Chen M S, Ding S M, Liu L, et al. Kinetics of phosphorus release from sediments and its relationship with iron speciation influenced by the mussel (Corbicula fluminea) bioturbation[J]. Science of the Total Environment, 2016, 542(Pt A): 833-840
|
Tu C Q, Jin Z H, Che F F, et al. Characterization of phosphorus sorption and microbial community in lake sediments during overwinter and recruitment periods of cyanobacteria[J]. Chemosphere, 2022, 307(Pt 1): 135777
|
Parsons C T, Rezanezhad F, O’Connell D W, et al. Sediment phosphorus speciation and mobility under dynamic redox conditions[J]. Biogeosciences, 2017, 14(14): 3585-3602
|
杨文斌, 唐皓, 韩超, 等. 太湖沉积物铁形态分布特征及磷铁相关性分析[J]. 中国环境科学, 2016, 36(4): 1145-1156
Yang W B, Tang H, Han C, et al. Distribution of iron forms and their correlations analysis with phosphorus forms in the sedimentary profiles of Taihu Lake[J]. China Environmental Science, 2016, 36(4): 1145-1156(in Chinese)
|
Wang X N, Pan X L, Gadd G M. Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles[J]. Science of the Total Environment, 2019, 658: 8-15
|
Zhu M Y, Paerl H W, Zhu G W, et al. The role of tropical cyclones in stimulating cyanobacterial (Microcystis spp.) blooms in hypertrophic Lake Taihu, China[J]. Harmful Algae, 2014, 39: 310-321
|
Hutchins D A, Witter A E, Butler A, et al. Competition among marine phytoplankton for different chelated iron species[J]. Nature, 1999, 400: 858-861
|
Domínguez-Martín M A, López-Lozano A, Melero-Rubio Y, et al. Marine Synechococcus sp. strain WH7803 shows specific adaptative responses to assimilate nanomolar concentrations of nitrate[J]. Microbiology Spectrum, 2022, 10(4): e0018722
|
朱广伟, 邹伟, 国超旋, 等. 太湖水体磷浓度与赋存量长期变化(2005—2018年)及其对未来磷控制目标管理的启示[J]. 湖泊科学, 2020, 32(1): 21-35
Zhu G W, Zou W, Guo C X, et al. Long-term variations of phosphorus concentration and capacity in Lake Taihu, 2005-2018: Implications for future phosphorus reduction target management[J]. Journal of Lake Sciences, 2020, 32(1): 21-35(in Chinese)
|
Salmon T P, Rose A L, Neilan B A, et al. The FeL model of iron acquisition: Nondissociative reduction of ferric complexes in the marine environment[J]. Limnology and Oceanography, 2006, 51(4): 1744-1754
|
Behnke J, LaRoche J. Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs)[J]. European Journal of Phycology, 2020, 55(3): 339-360
|
Bauer P, Bereczky Z. Gene networks involved in iron acquisition strategies in plants[J]. Agronomie, 2003, 23(5/6): 447-454
|
Hell R, Stephan U W. Iron uptake, trafficking and homeostasis in plants[J]. Planta, 2003, 216(4): 541-551
|
Staiger D. Chemical strategies for iron acquisition in plants[J]. Angewandte Chemie (International Ed in English), 2002, 41(13): 2259-2264
|
Basu S, Gledhill M, de Beer D, et al. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust[J]. Communications Biology, 2019, 2: 284
|
Kazamia E, Sutak R, Paz-Yepes J, et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms[J]. Science Advances, 2018, 4(5): eaar4536
|