二价铁对铜绿微囊藻和栅藻细胞生长的影响及机理
Effects and Their Mechanisms of Fe2+ on Cell Growth of Microcystis aeruginosa and Scenedesmus sp.
-
摘要: 铁磷相互作用影响藻类生长,但铁变化对藻类胞内外磷赋存和铁吸收的影响机制还不清楚。本研究选择湖泊水华代表种铜绿微囊藻(Microcystis aeruginosa)及其竞争优势种栅藻(Scenedesmus sp.)为研究对象,设置了5个二价铁(Fe2+)浓度处理组(0.00、0.05、0.50、1.00和1.50 mg·L-1)。测量了不同铁浓度下藻类细胞密度和微藻胞内外磷浓度及其胞外分泌物包括胞外聚合物(extracellular polymeric substances phosphorus, EPS)和铁载体浓度的变化,探究二价铁浓度变化如何通过胞外分泌物影响微藻磷吸收赋存和铁吸收的过程。研究结果显示,2种微藻细胞密度最适生长的二价铁浓度不同,1.00 mg·L-1时利于铜绿微囊藻生长,0.05 mg·L-1时利于栅藻生长。铜绿微囊藻胞内磷及胞内铁结合态磷浓度与二价铁浓度呈正相关性。铜绿微囊藻和栅藻的胞外磷浓度均与二价铁浓度呈负相关性。添加二价铁1 d后,二价铁浓度与2种微藻胞外EPS蛋白均呈正相关性,与EPS多糖呈负相关性。第14天时,1.50 mg·L-1二价铁浓度下2种微藻分泌的EPS蛋白浓度最高,分别为21.12 mg·L-1和19.19 mg·L-1。结果表明,在低浓度二价铁下2种微藻会瞬时分泌更多的铁载体吸收铁,和通过分泌胞外EPS多糖形式吸收胞外磷。在高浓度二价铁下,有利于2种微藻叶绿素a的产量和铁结合态磷的积累;且铜绿微囊藻将胞外磷转化为胞内磷的效率高于栅藻。本研究可为湖泊富营养化治理过程中阻断沉积物中内源磷对藻类生长的供给循环提供理论指导意义。Abstract: The interaction of iron and phosphorus affects phytoplankton growth, but the mechanism of iron change on the phosphorus (P) allocation of algal cells and iron absorption is still unclear. To explore how the change of Fe2+ concentration affects the process of P allocation and iron absorption in microalgae through extracellular secretions, this study selected Microcystis aeruginosa and Scenedesmus sp. The Fe2+ concentration among treatment groups was 0.00, 0.05, 0.50, 1.00 and 1.50 mg·L-1. The cell density of algae, changes in their P forms, content, and distribution (intracellular P and extracellular P), and extracellular secretions (including EPS and siderophores) of microalgae were explored. The results showed that Fe2+ at 1.00 mg·L-1 concentration was conducive to the growth of M. aeruginosa, and at 0.05 mg·L-1 was beneficial to the growth of Scenedesmus sp. The Fe2+ concentration was positively correlated with the concentration of intracellular P and iron-bound P in M. aeruginosa, but negatively correlated with the extracellular P concentration. One day after Fe2+ addition, Fe2+ concentration was positively correlated with extracellular EPS proteins but negatively correlated with EPS polysaccharides. On the 14th day in Fe2+ treatment at 1.50 mg·L-1 concentration, the EPS protein concentrations of M. aeruginosa and Scenedesmus sp. were the highest, 21.12 mg·L-1 and 19.19 mg·L-1, respectively. The results indicated that when at the low Fe2+ concentration conditions, the two microalgae could immediately secrete more siderophores to absorb iron and absorb extracellular P by secreting extracellular EPS polysaccharide. When at high Fe2+ concentration, it was beneficial to the yield of chlorophyll a and the accumulation of iron-bound P. The efficiency of M. aeruginosa in converting extracellular P to intracellular P was higher than that of Scenedesmus sp., mainly existed as iron-bound P, which reduced the total P accumulation in algal cells. This study can provide theoretical guidance for blocking the supply cycle of endogenous P from sediments to algae growth during the process of ecological remediation.
-
Key words:
- Fe2+ /
- Microcystis aeruginosa /
- Scenedesmus sp. /
- phosphorus allocation /
- iron absorption /
- EPS /
- siderophores
-
-
朱广伟, 秦伯强, 张运林, 等. 近70年来太湖水体磷浓度变化特征及未来控制策[J]. 湖泊科学, 2021, 33(4): 957-973 Zhu G W, Qin B Q, Zhang Y L, et al. Fluctuation of phosphorus concentration in Lake Taihu in the past 70 years and future control strategy[J]. Journal of Lake Sciences, 2021, 33(4): 957-973(in Chinese)
Tang C C, Zhang X Y, He Z W, et al. Role of extracellular polymeric substances on nutrients storage and transfer in algal-bacteria symbiosis sludge system treating wastewater[J]. Bioresource Technology, 2021, 331: 125010 Yao B, Xi B D, Hu C M, et al. A model and experimental study of phosphate uptake kinetics in algae: Considering surface adsorption and P-stress[J]. Journal of Environmental Sciences (China), 2011, 23(2): 189-198 Xu Y, Wu Y H, Esquivel-Elizondo S, et al. Using microbial aggregates to entrap aqueous phosphorus[J]. Trends in Biotechnology, 2020, 38(11): 1292-1303 Powell N, Shilton A, Chisti Y, et al. Towards a luxury uptake process via microalgae: Defining the polyphosphate dynamics[J]. Water Research, 2009, 43(17): 4207-4213 Falkner G, Falkner R. The Complex Regulation of the Phosphate Uptake System of Cyanobacteria[M]//Bioenergetic Processes of Cyanobacteria. Dordrecht: Springer Netherlands, 2011: 109-130 Blanco-Ameijeiras S, Moisset S A M, Trimborn S, et al. Elemental stoichiometry and photophysiology regulation of Synechococcus sp. PCC7002 under increasing severity of chronic iron limitation[J]. Plant & Cell Physiology, 2018, 59(9): 1803-1816 Lawrence J R, Swerhone G, Kwong Y. Natural attenuation of aqueous metal contamination by an algal mat[J]. Canadian Journal of Microbiology, 1998, 44(9): 825-832 杨宏伟. 黄河沉积物铁对磷赋存形态及释放的影响[C]//中国环境科学学会. 2019中国环境科学学会科学技术年会论文集. 西安: 中国环境科学学会, 2019: 783-790 骆科枢. 淡水藻类对磷、铁的协同吸收及增殖过程研究[D]. 广州: 广东工业大学, 2015: 50-55 Luo K S. Study on synergistic absorption and proliferation of phosphorus and iron by freshwater algae[D]. Guangzhou: Guangdong University of Technology, 2015: 50 -55(in Chinese)
Xu H C, Jiang H L, Yu G H, et al. Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation[J]. Chemosphere, 2014, 117: 815-822 Ahern K S, Ahern C R, Udy J W. In situ field experiment shows Lyngbya majuscula (Cyanobacterium) growth stimulated by added iron, phosphorus and nitrogen[J]. Harmful Algae, 2008, 7(4): 389-404 Molot L A, Watson S B, Creed I F, et al. A novel model for cyanobacteria bloom formation: The critical role of anoxia and ferrous iron[J]. Freshwater Biology, 2014, 59(6): 1323-1340 宋婵媛, 白芳, 李天丽, 等. 绿藻栅藻对微囊藻的抑制效应及评价[J]. 水生生物学报, 2022, 46(12): 1916-1923 Song C Y, Bai F, Li T L, et al. Inhibitory effect of Scenedesmus sp. on Microcystis aeruginosa and its evaluation[J]. Acta Hydrobiologica Sinica, 2022, 46(12): 1916-1923(in Chinese)
Hassler C S, Twiss M R. Bioavailability of iron sensed by a phytoplanktonic Fe-bioreporter[J]. Environmental Science & Technology, 2006, 40(8): 2544-2551 Fujii M, Dang T C, Rose A L, et al. Effect of light on iron uptake by the freshwater Cyanobacterium Microcystis aeruginosa[J]. Environmental Science & Technology, 2011, 45(4): 1391-1398 安振珍, 张铁明, 李玉华, 等. Fe3+对脆杆藻增殖的影响[J]. 世界科技研究与发展, 2008, 30(4): 407-409 An Z Z, Zhang T M, Li Y H, et al. Effects of Fe3+ on Fragilaria sp. in fresh water[J]. World Sci-Tech R & D, 2008, 30(4): 407-409(in Chinese)
Zhang T, He J, Luo X Z. Effect of Fe and EDTA on freshwater cyanobacteria bloom formation[J]. Water, 2017, 9(5): 326 Griffiths M J, Garcin C, van Hille R P, et al. Interference by pigment in the estimation of microalgal biomass concentration by optical density[J]. Journal of Microbiological Methods, 2011, 85(2): 119-123 陈明华, 谢良国, 付志强, 等. 丙酮法和热乙醇法测定浮游植物叶绿素a的方法比对[J]. 环境监测管理与技术, 2016, 28(2): 46-48 Chen M H, Xie L G, Fu Z Q, et al. Comparison of two methods for measurement of phytoplanktonic chlorophyll-a[J]. The Administration and Technique of Environmental Monitoring, 2016, 28(2): 46-48(in Chinese)
Najafi A, Hashemi M. Vortex-assisted natural deep eutectic solvent microextraction using response surface methodology optimization for determination of orthophosphate in water samples by molybdenum blue method[J]. Journal of Separation Science, 2019, 42(19): 3102-3109 Rydin E. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research, 2000, 34(7): 2037-2042 Yue F F, Zhang J R, Xu J X, et al. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method[J]. Frontiers in Nutrition, 2022, 9: 963318 Chen B, Li F, Liu N, et al. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium[J]. Bioresource Technology, 2015, 190: 299-306 Machuca A, Milagres A M F. Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus[J]. Letters in Applied Microbiology, 2003, 36(3): 177-181 刘球英, 骆艳娥. 改进Ferrozine法测定溶液中的二价铁、三价铁及总铁[J]. 科学技术与工程, 2016, 16(10): 85-88 Liu Q Y, Luo Y E. Determination of Fe2+, Fe3+ and total iron ion with improved ferrozine UV-spectrophotometry[J]. Science Technology and Engineering, 2016, 16(10): 85-88(in Chinese)
Kappler A, Bryce C, Mansor M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374 方振东, 龙向宇, 唐然, 等. 胞外聚合物结合磷效能的研究[J]. 环境科学学报, 2011, 31(11): 2374-2379 Fang Z D, Long X Y, Tang R, et al. The phosphorus-incorporating property of extracellular polymer substances[J]. Acta Scientiae Circumstantiae, 2011, 31(11): 2374-2379(in Chinese)
Joshi S R, Kukkadapu R K, Burdige D J, et al. Organic matter remineralization predominates phosphorus cycling in the mid-bay sediments in the Chesapeake Bay[J]. Environmental Science & Technology, 2015, 49(10): 5887-5896 Barcytė D, Pilátová J, Mojzeš P, et al. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate[J]. Journal of Phycology, 2020, 56(1): 217-232 Beutel M W, Leonard T M, Dent S R, et al. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake[J]. Water Research, 2008, 42(8/9): 1953-1962 谭啸, 石琳, 段志鹏, 等. 氮磷比对微囊藻与栅藻磷赋存及分配的影响[J]. 湖泊科学, 2022, 34(5): 1461-1470 Tan X, Shi L, Duan Z P, et al. Influence of N∶P ratio on the phosphorus accumulation and distribution of Microcystis and Scenedesmus[J]. Journal of Lake Sciences, 2022, 34(5): 1461-1470(in Chinese)
Wu Q R, Guo L, Li X Z, et al. Effect of phosphorus concentration and light/dark condition on phosphorus uptake and distribution with microalgae[J]. Bioresource Technology, 2021, 340: 125745 Qiu Y T, Wang Z H, Liu F, et al. Inhibition of Scenedesmus quadricauda on Microcystis flos-aquae[J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5907-5916 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1-7 Chi J L, Hao M, Wang Z X, et al. Advances in research and application of phosphorus-solubilizing microorganism[J]. Journal of Microbiology, 2021, 41(1): 1-7(in Chinese)
Chen M S, Ding S M, Liu L, et al. Kinetics of phosphorus release from sediments and its relationship with iron speciation influenced by the mussel (Corbicula fluminea) bioturbation[J]. Science of the Total Environment, 2016, 542(Pt A): 833-840 Tu C Q, Jin Z H, Che F F, et al. Characterization of phosphorus sorption and microbial community in lake sediments during overwinter and recruitment periods of cyanobacteria[J]. Chemosphere, 2022, 307(Pt 1): 135777 Parsons C T, Rezanezhad F, O’Connell D W, et al. Sediment phosphorus speciation and mobility under dynamic redox conditions[J]. Biogeosciences, 2017, 14(14): 3585-3602 杨文斌, 唐皓, 韩超, 等. 太湖沉积物铁形态分布特征及磷铁相关性分析[J]. 中国环境科学, 2016, 36(4): 1145-1156 Yang W B, Tang H, Han C, et al. Distribution of iron forms and their correlations analysis with phosphorus forms in the sedimentary profiles of Taihu Lake[J]. China Environmental Science, 2016, 36(4): 1145-1156(in Chinese)
Wang X N, Pan X L, Gadd G M. Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles[J]. Science of the Total Environment, 2019, 658: 8-15 Zhu M Y, Paerl H W, Zhu G W, et al. The role of tropical cyclones in stimulating cyanobacterial (Microcystis spp.) blooms in hypertrophic Lake Taihu, China[J]. Harmful Algae, 2014, 39: 310-321 Hutchins D A, Witter A E, Butler A, et al. Competition among marine phytoplankton for different chelated iron species[J]. Nature, 1999, 400: 858-861 Domínguez-Martín M A, López-Lozano A, Melero-Rubio Y, et al. Marine Synechococcus sp. strain WH7803 shows specific adaptative responses to assimilate nanomolar concentrations of nitrate[J]. Microbiology Spectrum, 2022, 10(4): e0018722 朱广伟, 邹伟, 国超旋, 等. 太湖水体磷浓度与赋存量长期变化(2005—2018年)及其对未来磷控制目标管理的启示[J]. 湖泊科学, 2020, 32(1): 21-35 Zhu G W, Zou W, Guo C X, et al. Long-term variations of phosphorus concentration and capacity in Lake Taihu, 2005-2018: Implications for future phosphorus reduction target management[J]. Journal of Lake Sciences, 2020, 32(1): 21-35(in Chinese)
Salmon T P, Rose A L, Neilan B A, et al. The FeL model of iron acquisition: Nondissociative reduction of ferric complexes in the marine environment[J]. Limnology and Oceanography, 2006, 51(4): 1744-1754 Behnke J, LaRoche J. Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs)[J]. European Journal of Phycology, 2020, 55(3): 339-360 Bauer P, Bereczky Z. Gene networks involved in iron acquisition strategies in plants[J]. Agronomie, 2003, 23(5/6): 447-454 Hell R, Stephan U W. Iron uptake, trafficking and homeostasis in plants[J]. Planta, 2003, 216(4): 541-551 Staiger D. Chemical strategies for iron acquisition in plants[J]. Angewandte Chemie (International Ed in English), 2002, 41(13): 2259-2264 Basu S, Gledhill M, de Beer D, et al. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust[J]. Communications Biology, 2019, 2: 284 Kazamia E, Sutak R, Paz-Yepes J, et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms[J]. Science Advances, 2018, 4(5): eaar4536 -

计量
- 文章访问数: 799
- HTML全文浏览数: 799
- PDF下载数: 151
- 施引文献: 0