[1] |
曾宏德. 油泥清洗工艺中的药剂化学研究[D]. 大连: 大连理工大学, 2006.
|
[2] |
王飞, 梁政, 邓雄, 等. 储油罐底部油泥清洗技术进展及综合处理技术开发[J]. 清洗世界, 2011, 27(6): 23-27. doi: 10.3969/j.issn.1671-8909.2011.06.007
|
[3] |
张学发, 杨昆, 马骏, 等. 微/纳米气泡技术在金属表面脱脂处理中的应用研究[J]. 清洗世界, 2011, 27(10): 29-33. doi: 10.3969/j.issn.1671-8909.2011.10.008
|
[4] |
CHAHINE G L, KAPAHI A, CHOI J, et al. Modeling of surface cleaning by cavitation bubble dynamics and collapse[J]. Ultrasonics Sonochemistry, 2016, 29: 528-549. doi: 10.1016/j.ultsonch.2015.04.026
|
[5] |
黄河, 杨庆峰, 吴来明. 微纳米气泡清洗“南海一号”出水瓷器的安全性评价研究[J]. 文物保护与考古科学, 2017, 29(3): 30-37.
|
[6] |
TUZIUTI T. Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles[J]. Ultrasonics Sonochemistry, 2016, 29: 604-611. doi: 10.1016/j.ultsonch.2015.09.011
|
[7] |
YAMASHITA T, ANDO K. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents[J]. Ultrasonics Sonochemistry, 2019, 52: 268-279. doi: 10.1016/j.ultsonch.2018.11.025
|
[8] |
REUTER F, METTIN R. Mechanisms of single bubble cleaning[J]. Ultrasonics Sonochemistry, 2016, 29: 550-562. doi: 10.1016/j.ultsonch.2015.06.017
|
[9] |
MAEKAWA S, MIYAMOTO M, HINOMOTO N, et al. Degreasing of solid surfaces by microbubble cleaning[J]. Japanese Journal of Applied Physics, 2007, 46(3): 1236-1243.
|
[10] |
AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere: Environmental Toxicology and Risk Assessment, 2011, 84(9): 1175-1180.
|
[11] |
TSUGE H. Fundamentals of microbubbles and nanobubbles[J]. Bulletin of the Society of Sea Water Science, 2010, 64(1): 4-10.
|
[12] |
颜攀, 黄正梁, 王靖岱, 等. 文丘里气泡发生器的气泡尺寸及分布[J]. 浙江大学学报(工学版), 2017, 51(10): 2070-2076. doi: 10.3785/j.issn.1008-973X.2017.10.023
|
[13] |
LEE C H, CHOI H, JERNG D, et al. Experimental investigation of microbubble generation in the venturi nozzle[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1127-1138. doi: 10.1016/j.ijheatmasstransfer.2019.03.040
|
[14] |
Xu X, Ge X, QIAN Y D, et al. Effect of nozzle diameter on bubble generation with gas self-suction through swirling flow[J]. Chemical Engineering Research and Design, 2018, 138: 13-20. doi: 10.1016/j.cherd.2018.04.027
|
[15] |
VAZIRIZADEH A, BOUCHARD J, CHEN Y. Effect of particles on bubble size distribution and gas hold-up in column flotation[J]. International Journal of Mineral Processing, 2016, 157: 163-173. doi: 10.1016/j.minpro.2016.10.005
|
[16] |
邓超, 杨丽, 陈海军, 等. 微纳米气泡发生装置及其应用的研究进展[J]. 石油化工, 2014, 43(10): 1206-1213. doi: 10.3969/j.issn.1000-8144.2014.10.018
|
[17] |
杨红兵, 丁为民, 陈坤杰. 气泡对蔬菜的清洗作用及清洗参数模型的建立[J]. 江西农业学报, 2007, 19(6): 102-104. doi: 10.3969/j.issn.1001-8581.2007.06.035
|
[18] |
FOLDYNA J, SITEK L, ŠVEHLA B, et al. Utilization of ultrasound to enhance high-speed water jet effects[J]. Ultrasonics Sonochemistry, 2004, 11(3/4): 131-137.
|
[19] |
刘建华, 张杰, 李康伟. 气泡去除夹杂物技术研究现状及发展趋势[J]. 炼钢, 2017, 33(2): 1-9.
|