-
在油田和炼油厂的生产、储运以及含油污水处理过程中,会产生大量含油污泥。妥善处理与处置含油污泥,避免造成环境污染一直是油田和环保部门非常重视的问题[1]。含油污泥主要分为落地油泥、罐底油泥和炼油厂油泥。沉积在储罐罐底的油泥会直接影响油品质量,所以罐底的定期清理必不可少[2]。传统的射流清洗方法会造成水资源浪费,使用化学清洗剂可能造成二次污染。而气泡清洗法具有低能耗和自身清洁的特点,为罐底油泥的去除与清洗提供了新的手段。
气泡清洗法已被广泛应用在金属表面清洗、瓷器清洗等固体表面清洗领域。张学发等[3]验证了微气泡在金属脱脂应用上的可行性和优越性;CHAHINE等[4]建立了空化气泡清洁表面颗粒的力学模型;黄河等[5]的研究验证了气泡清洗瓷器表面的安全性。除了实验验证和应用研究,很多学者也对气泡清洗过程和机理做过论证。TUZIUTI[6]研究了微米级气泡清洗表面油脂的过程;YAMASHITA等[7]发现空化气泡的物理作用是去除材料表面附着颗粒的主要因素;REUTER等[8]研究了单个气泡去除玻璃表面附着颗粒机理;MAEKAWA等[9]认为微小气泡的上浮并带走油脂是固体表面清洗的机制之一。以上研究都表明气泡清洗在固体表面清洗领域具有应用潜力。
为明确气泡清洗技术在罐底底泥清洗中的应用情况,本研究考察了气泡尺寸差异对固体表面清洗效果的影响。通过搭建玻璃表面油污气泡清洗可视化实验装置,设计了可产生多种尺寸分布的气泡发生器,以研究不同尺寸气泡对固体表面粘附性污染物清洗效果的差异,并分析清洗时间、距离和角度等参数对清洗效果的影响,以期为高效处理油泥污染问题提供参考。
气泡尺寸对清洗固体表面油脂及颗粒污染物的影响
Effect of bubble size on cleaning of oil and particles on solid surface
-
摘要: 为明确气泡清洗技术在罐底油泥清洗中的应用情况,考察了气泡尺寸差异对固体表面清洗效果的影响。搭建了玻璃表面油污气泡清洗可视化实验装置,并设计了气泡发生器。该发生器可通过调节气液比产生多种尺寸分布的气泡。实验中产生的气泡直径分布于80~1 200 μm。研究了气泡尺寸、清洗时间、距离和角度等参数对清洗效果的影响,结果表明,在液体流量为2.5 L·min−1条件下,清洗去除率随气泡尺寸的增大而提高,气泡的平均直径为800 μm时的清洗效果最好,能够将去除率从用水清洗的4.5%提高到68.3%,且当基底与水流方向为45°时的清洗去除率高于垂直或平行放置。上述结果说明,气泡撞击和破裂产生的水射流和涡流冲刷作用是主要的清洗机制。本研究结果可为高效处理油泥污染问题提供理论和实践参考,为罐底油泥清洗开拓新的解决路径。Abstract: In order to clarify the application of bubble cleaning technology in tank bottom sludge cleaning, the effect of bubble size on the cleaning performance of solid surfaces was investigated. A visualized experimental device for cleaning oil and particles on glass surfaces was set up. A bubble generator was designed to produce bubbles with an average diameter changing from 80 to 1 200 μm by adjusting the gas-liquid ratio. The effects of bubble size and cleaning parameters such as time, distance and angle on the cleaning effect were studied. The results showed that the removal efficiency increased with the increase of the bubble size at a liquid flow rate of 2.5 L·min−1. The best cleaning effect occurred for the bubbles with average diameter of 800 μm, which could improve the removal efficiency of 4.5% by water washing to 68.3%. Furthermore, the removal efficiency was higher when the angle between the substrate and the water flow was 45° than that placed horizontally and vertically. The above results showed that the scouring effect of water jet and vortex caused by the collosion and breakup of bubbles were the main cleaning mechanisms for the surfaces. The research results provide theoretical and practical references for the efficient treatment of oily sludge pollution, and open up a new solution path for tank bottom sludge cleaning.
-
Key words:
- bubble /
- bubble generator /
- solid surface /
- tank bottom oily sludge cleaning
-
表 1 不同时间和距离清洗后玻璃基底上污染物的残留量
Table 1. Residual contaminants on glass substrates after cleaning at different times and distances
清洗距离/cm 清洗时间/s 污染物残留量/g 8 30 0.060 5 8 60 0.029 0 8 90 0.018 6 10 30 0.080 9 10 60 0.031 8 10 90 0.011 0 表 2 不同角度清洗后玻璃基底上污染物的残留量
Table 2. Residual contaminants on glass substrates before and after cleaning at different angles
清洗
角度/(°)水清洗后污染物
残留量/g气泡清洗后污染物
残留量/g0 0.098 6 0.034 4 22.5 0.085 1 0.026 5 45.0 0.065 0 0.023 4 67.5 0.080 1 0.026 9 90.0 0.095 5 0.031 8 -
[1] 曾宏德. 油泥清洗工艺中的药剂化学研究[D]. 大连: 大连理工大学, 2006. [2] 王飞, 梁政, 邓雄, 等. 储油罐底部油泥清洗技术进展及综合处理技术开发[J]. 清洗世界, 2011, 27(6): 23-27. doi: 10.3969/j.issn.1671-8909.2011.06.007 [3] 张学发, 杨昆, 马骏, 等. 微/纳米气泡技术在金属表面脱脂处理中的应用研究[J]. 清洗世界, 2011, 27(10): 29-33. doi: 10.3969/j.issn.1671-8909.2011.10.008 [4] CHAHINE G L, KAPAHI A, CHOI J, et al. Modeling of surface cleaning by cavitation bubble dynamics and collapse[J]. Ultrasonics Sonochemistry, 2016, 29: 528-549. doi: 10.1016/j.ultsonch.2015.04.026 [5] 黄河, 杨庆峰, 吴来明. 微纳米气泡清洗“南海一号”出水瓷器的安全性评价研究[J]. 文物保护与考古科学, 2017, 29(3): 30-37. [6] TUZIUTI T. Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles[J]. Ultrasonics Sonochemistry, 2016, 29: 604-611. doi: 10.1016/j.ultsonch.2015.09.011 [7] YAMASHITA T, ANDO K. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents[J]. Ultrasonics Sonochemistry, 2019, 52: 268-279. doi: 10.1016/j.ultsonch.2018.11.025 [8] REUTER F, METTIN R. Mechanisms of single bubble cleaning[J]. Ultrasonics Sonochemistry, 2016, 29: 550-562. doi: 10.1016/j.ultsonch.2015.06.017 [9] MAEKAWA S, MIYAMOTO M, HINOMOTO N, et al. Degreasing of solid surfaces by microbubble cleaning[J]. Japanese Journal of Applied Physics, 2007, 46(3): 1236-1243. [10] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere: Environmental Toxicology and Risk Assessment, 2011, 84(9): 1175-1180. [11] TSUGE H. Fundamentals of microbubbles and nanobubbles[J]. Bulletin of the Society of Sea Water Science, 2010, 64(1): 4-10. [12] 颜攀, 黄正梁, 王靖岱, 等. 文丘里气泡发生器的气泡尺寸及分布[J]. 浙江大学学报(工学版), 2017, 51(10): 2070-2076. doi: 10.3785/j.issn.1008-973X.2017.10.023 [13] LEE C H, CHOI H, JERNG D, et al. Experimental investigation of microbubble generation in the venturi nozzle[J]. International Journal of Heat and Mass Transfer, 2019, 136: 1127-1138. doi: 10.1016/j.ijheatmasstransfer.2019.03.040 [14] Xu X, Ge X, QIAN Y D, et al. Effect of nozzle diameter on bubble generation with gas self-suction through swirling flow[J]. Chemical Engineering Research and Design, 2018, 138: 13-20. doi: 10.1016/j.cherd.2018.04.027 [15] VAZIRIZADEH A, BOUCHARD J, CHEN Y. Effect of particles on bubble size distribution and gas hold-up in column flotation[J]. International Journal of Mineral Processing, 2016, 157: 163-173. doi: 10.1016/j.minpro.2016.10.005 [16] 邓超, 杨丽, 陈海军, 等. 微纳米气泡发生装置及其应用的研究进展[J]. 石油化工, 2014, 43(10): 1206-1213. doi: 10.3969/j.issn.1000-8144.2014.10.018 [17] 杨红兵, 丁为民, 陈坤杰. 气泡对蔬菜的清洗作用及清洗参数模型的建立[J]. 江西农业学报, 2007, 19(6): 102-104. doi: 10.3969/j.issn.1001-8581.2007.06.035 [18] FOLDYNA J, SITEK L, ŠVEHLA B, et al. Utilization of ultrasound to enhance high-speed water jet effects[J]. Ultrasonics Sonochemistry, 2004, 11(3/4): 131-137. [19] 刘建华, 张杰, 李康伟. 气泡去除夹杂物技术研究现状及发展趋势[J]. 炼钢, 2017, 33(2): 1-9.