[1] |
董滨, 高君, 陈思思, 等. 我国剩余污泥厌氧消化的主要影响因素及强化[J]. 环境科学, 2020, 41(7): 3384-3391.
|
[2] |
XU Y, LU Y Q, ZHENG L K, et al. Perspective on enhancing the anaerobic digestion of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 389: 121847. doi: 10.1016/j.jhazmat.2019.121847
|
[3] |
CLIMENT M, FERRER I, BAEZA M M, et al. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions[J]. Chemical Engineering Journal, 2007, 133(1/2/3): 335-342.
|
[4] |
邴君妍, 罗恩华, 金宜英, 等. 中国餐厨垃圾资源化利用系统建设现状研究[J]. 环境科学与管理, 2018, 43(4): 39-43. doi: 10.3969/j.issn.1673-1212.2018.04.011
|
[5] |
YANG L L, HUANG Y, ZHAO M X, et al. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment[J]. International Biodeterioration & Biodegradation, 2015, 105: 153-159.
|
[6] |
段妮娜, 董滨, 李江华, 等. 污泥和餐厨垃圾联合干法中温厌氧消化性能研究[J]. 环境科学, 2013, 34(1): 321-327.
|
[7] |
郝晓地, 唐兴, 曹达啓. 剩余污泥厌氧共消化技术研究现状及应用趋势[J]. 环境工程学报, 2016, 10(12): 6809-6818. doi: 10.12030/j.cjee.201508039
|
[8] |
DAI X H, DUAN N A, DONG B, et al. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance[J]. Waste Management, 2013, 33(2): 308-316. doi: 10.1016/j.wasman.2012.10.018
|
[9] |
KIM M S, LEE K M, KIM H E, et al. Disintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterability[J]. Environmental Science & Technology, 2016, 50(13): 7106-7115.
|
[10] |
宋秀兰, 石杰, 吴丽雅. 过硫酸盐氧化法对污泥脱水性能的影响[J]. 环境工程学报, 2015, 9(11): 5585-5590. doi: 10.12030/j.cjee.20151172
|
[11] |
NI B J, YAN X F, SUN J, et al. Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge[J]. Chemosphere, 2019, 232: 45-53. doi: 10.1016/j.chemosphere.2019.05.148
|
[12] |
张超, 李本高, 陈银广. 影响剩余污泥脱水的关键因素研究进展[J]. 环境科学与技术, 2011, 34(6G): 152-156.
|
[13] |
LIANG C J, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543. doi: 10.1016/j.chemosphere.2008.08.043
|
[14] |
SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001
|
[15] |
FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1
|
[16] |
ZRINYI N, PHAM A L T. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution[J]. Water Research, 2017, 120: 43-51. doi: 10.1016/j.watres.2017.04.066
|
[17] |
JOHNSON R L, TRATNYEK P G, JOHNSON R O. Persulfate persistence under thermal activation conditions[J]. Environmental Science & Technology, 2008, 42(24): 9350-9356.
|
[18] |
GE D D, DONG Y T, ZHANG W R, et al. A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight[J]. Science of the Total Environment, 2020, 733: 139146. doi: 10.1016/j.scitotenv.2020.139146
|
[19] |
WANG X M, WANG W, ZHOU B, et al. Improving solid-liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation[J]. Journal of Hazardous Materials, 2020, 398: 122989. doi: 10.1016/j.jhazmat.2020.122989
|
[20] |
高诗卉, 王毅力. Fe0/Fe3C@CS激发PMS调理对活性污泥脱水性能的影响[J]. 环境工程学报, 2020, 14(7): 1915-1923.
|
[21] |
YU G H, HE P J, SHAO L M, et al. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949.
|
[22] |
LI Y F, ZHU Y Q, WANG D B, et al. Fe(Ⅱ) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication[J]. Water Research, 2020, 174: 115626. doi: 10.1016/j.watres.2020.115626
|